DOI QR코드

DOI QR Code

Spectrofluorometric Properties of N-Terminal Domain of Lumazine Protein from Photobacterium leiognathi

  • Kang, Kyoung-Suk (Department of Biochemistry, Chungnam National University) ;
  • Kim, So-Young (Department of Biochemistry, Chungnam National University) ;
  • Lee, Jung-Hwan (Department of Biochemistry, Chungnam National University) ;
  • Nam, Ki-Seok (Department of Biochemistry, Chungnam National University) ;
  • Lee, Eui Ho (Department of Biochemistry, Chungnam National University) ;
  • Lee, Chan Yong (Department of Biochemistry, Chungnam National University)
  • Received : 2013.01.16
  • Accepted : 2013.03.13
  • Published : 2013.06.20

Abstract

Lumazine protein is a member of the riboflavin synthase superfamily and the intense fluorescence is caused by non-covalently bound to 6,7-dimethyl 8-ribityllumazine. To figure out the binding modes and the structure of the N-terminal domain of lumazine protein, the wild type of protein extending to amino acid 118 (N-LumP 118 Wt) and mutants of N-LumP 118 V41W, S48W, T50W, D64W, and A66W from Photobacterium leiognathi were purified. The biochemical properties of the wild type and mutants of N-LumP 118 proteins were analyzed by absorbance and fluorescence spectroscope. The peak of absorbance and fluorescence of lumazine ligand were shifted to longer wavelength on binding to N-LumPs. The observed absorbance value at 410 nm of lumazine bound to N-LumP 118 proteins indicate that one mole of N-LumP 118 proteins bind to one mole of ligand of lumazine. Fluorescence analysis show that the maximum peak of fluorescence of N-LumP S48W was shifted to the longest wavelength by binding with 6,7-dimethyl 8-ribityllumazine and was shown to the greatest quench effect by acrylamide among all tryptophan mutants.

Keywords

References

  1. Campbell, A. K. Essays Biochem. 1989, 24, 41.
  2. Lee, J. The Science of Photobiology; In Bioluminescence: Smith, K. C., Ed.; 1989; p 391.
  3. Herring, P. J. J. Biolumin. Chemilumin. 1987, 1, 147. https://doi.org/10.1002/bio.1170010303
  4. Meighen, E. A. Annu. Rev. Genet. 1994, 28, 117. https://doi.org/10.1146/annurev.ge.28.120194.001001
  5. Hastings, J. W.; Portrikas, C. J.; Gupta, S. C.; Kurfurst, M.; Makemson, J. C. Adv. Microbiol Physiol. 1985, 26, 235. https://doi.org/10.1016/S0065-2911(08)60398-7
  6. Hastings, J. W.; Nealson, K. H. Annu. Rev. Microbiol. 1977, 31, 549. https://doi.org/10.1146/annurev.mi.31.100177.003001
  7. Meighen, E. A. Annu. Rev. Microbiol. 1988, 42, 151. https://doi.org/10.1146/annurev.mi.42.100188.001055
  8. Meighen, E. A. Microbiol. Rev. 1991, 55, 123.
  9. Meighen, E. A.; Dunlop, P. Adv. Microbiol. Physiol. 1993, 34, 1. https://doi.org/10.1016/S0065-2911(08)60027-2
  10. Lee, C. Y.; Meighen, E. A. Biochem. Biophys. Res. Commun. 1992, 186, 690. https://doi.org/10.1016/0006-291X(92)90802-R
  11. Lee, C. Y.; O'Kane, D. J.; Meighen, E. A. J. Bacteriol. 1994, 176, 2100-2104.
  12. Gast, R.; Lee, J. Proc. Natl. Acad Sci. USA 1978, 75, 833. https://doi.org/10.1073/pnas.75.2.833
  13. Koka, P.; Lee, J. Proc. Natl. Acad Sci. USA 1979, 76, 3068. https://doi.org/10.1073/pnas.76.7.3068
  14. Small, E. D.; Koka, P.; Lee, J. J. Biol. Chem. 1980, 255, 8804.
  15. Lee, J. Biophys. Chem. 1993, 48, 149. https://doi.org/10.1016/0301-4622(93)85006-4
  16. O'Kane, D. J.; Karle, A. J.; Lee, J. Biochemistry 1985, 24, 1454.
  17. O'Kane, D. J.; Lee, J. Biochemistry 1985, 24, 1467. https://doi.org/10.1021/bi00327a027
  18. O'Kane, D. J.; Woodward, B.; Lee, J.; Prasher, D. C. Proc. Natl. Acad. Sci. USA 1991, 88, 1100. https://doi.org/10.1073/pnas.88.4.1100
  19. Chatwell, L.; Illarionova, V.; Illarionov, B.; Eisenreich, W.; Huber, R.; Skerra, A.; Bacher, A.; Fischer, M. J. Mol. Biol. 2008, 382, 44. https://doi.org/10.1016/j.jmb.2008.06.052
  20. Illarionov, B.; Eisenreich, W.; Wirth, M.; Lee, C. Y.; Woo, Y. E.; Bacher, A.; Fischer, M. Biol Chem. 2007, 388, 1313.
  21. Illarionov, B.; Illarionova, V.; Lee, J.; van Dongen, W.; Vervoort, J. Biochim. Biophys. Acta 1994, 1201, 251. https://doi.org/10.1016/0304-4165(94)90048-5
  22. Kim, S. Y.; Kim, R. R.; Choi, J. S.; Kim, Y. D.; Lee, C. Y. Bull. Korean Chem. Soc. 2010, 31, 1017. https://doi.org/10.5012/bkcs.2010.31.04.1017
  23. Kim, R. R.; Lee, J. H.; Ko, K. W.; Nam, K. S.; Lee, C. Y. Kor. J. Microbiol. 2011, 47, 14.
  24. Lee, C. Y.; Illarionov, B.; Woo, Y. E.; Kemter, K.; Kim, R. R.; Eberhardt, S.; Cushman, M.; Eisenreich, W.; Fischer, M.; Bacher, A. J. Biochem. Mol. Biol. 2007, 40, 239. https://doi.org/10.5483/BMBRep.2007.40.2.239
  25. Patterson, G. H.; Knobel, S. M.; Sharif, W. D.; Kain, S. R.; Piston, D. W. Biophys. J. 1997, 73, 2782.
  26. Yu, Y. A.; Shabahang, S.; Timiryasova, T. M.; Zhang, Q.; Beltz, R.; Gentschev, I.; Goebel, W.; Szalay, A. A. Nature Biotechnol. 2004, 22, 313. https://doi.org/10.1038/nbt937
  27. Rizzo, M. A.; Springer, G. H.; Granda, B.; Piston, D. W. Nature Biotechnol. 2004, 22, 445. https://doi.org/10.1038/nbt945

Cited by

  1. Generation of Fluorescent Bacteria with the Genes Coding for Lumazine Protein and Riboflavin Biosynthesis vol.21, pp.13, 2021, https://doi.org/10.3390/s21134506