DOI QR코드

DOI QR Code

Cold-tolerant strain of Haematococcus pluvialis (Haematococcaceae, Chlorophyta) from Blomstrandhalvøya (Svalbard)

  • Klochkova, Tatyana A. (Kamchatka State Technical University (KamchatGTU)) ;
  • Kwak, Min Seok (Department of Biology, Kongju National University) ;
  • Han, Jong Won (Department of Biology, Kongju National University) ;
  • Motomura, Taizo (Muroran Marine Station, Field Science Centre for Northern Biosphere, Hokkaido University) ;
  • Nagasato, Chikako (Muroran Marine Station, Field Science Centre for Northern Biosphere, Hokkaido University) ;
  • Kim, Gwang Hoon (Department of Biology, Kongju National University)
  • Received : 2013.04.15
  • Accepted : 2013.05.18
  • Published : 2013.06.15

Abstract

A new cold-adapted Arctic strain of Haematococcus pluvialis from Blomstrandhalv${\o}$ya Island (Svalbard) is described. This strain is predominantly always in non-motile palmelloid stage. Transmission electron microscopy showed the presence of very thick cell wall and abundant lipid vesicles in the palmelloids, including red and green cells. The external morphology of the non-motile palmelloid and motile bi-flagellated cells of our strain is similar to H. pluvialis; however it differs from H. pluvialis in physiology. Our strain is adapted to live and produce astaxanthin in the low temperature ($4-10^{\circ}C$), whilst the usual growth temperature for H. pluvialis is between $20-27^{\circ}C$. Phylogenetic analysis based on 18S rRNA gene data showed that our strain nested within the Haematococcus group, forming a sister relationship to H. lacustris and H. pluvialis, which are considered synonymous. Therefore, we identified our Arctic strain as H. pluvialis.

Keywords

References

  1. Bischoff, H. W. & Bold, H. C. 1963. Phycological studies. IV. Some soil algae from enchanted rock and related algal species. Univ. Texas Publ. No. 6318:1-95.
  2. Chen, P., Min, M., Chen, Y., Wang, L., Li, Y., Chen, Q., Wang, C., Wan, Y., Wang, X., Cheng, Y., Deng, S., Hennessy, K., Lin, X., Liu, Y., Wang, Y., Martinez, B. & Ruan, R. 2009. Review of the biological and engineering aspects of algae to fuels approach. Int. J. Agric. Biol. Eng. 2:1-30.
  3. Collins, A. M., Jones, H. D. T., Han, D., Hu, Q., Beechem, T. E. & Timlin, J. A. 2011. Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS ONE 6:e24302. https://doi.org/10.1371/journal.pone.0024302
  4. Czygan, F. C. 1970. Blood-rain and blood-snow: nitrogendeficient cells of Haematococcus pluvialis and Chlamydomonas nivalis. Arch. Mikrobiol. 74:69-76. https://doi.org/10.1007/BF00408689
  5. Droop, M. R. 1954. Conditions governing haematochrome formation and loss in the alga Haematococcus pluvialis Flotow. Arch. Mikrobiol. 20:391-397. https://doi.org/10.1007/BF00690882
  6. Droop, M. R. 1961. Haematococcus pluvialis and its allies. III: Organic nutrition. Rev. Algol. N. S. 5:247-259.
  7. Gonzalez, M. A., Cifuentes, A. S. & Gomez, P. I. 2009. Growth and total carotenoid content in four Chilean strains of Haematococcus pluvialis Flotow, under laboratory conditions. Gayana Bot. 66:58-70.
  8. Guiry, M. D. & Guiry, G. M. 2013. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed Mar 27, 2013.
  9. Hagen, C., Braune, W. & Bjorn, L. O. 1994. Functional aspects of secondary carotenoids in Haematococcus lacustris (Volvocales). III. Action as a "sunshade". J. Phycol. 30:241-248. https://doi.org/10.1111/j.0022-3646.1994.00241.x
  10. Hagen, C., Siegmund, S. & Braune, W. 2002. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur. J. Phycol. 37:217-226. https://doi.org/10.1017/S0967026202003669
  11. Kim, G. H., Klochkova, T. A., Han, J. W., Kang, S. -H., Choi, H. G., Chung, K. W. & Kim, S. J. 2011. Freshwater and terrestrial algae from Ny-Alesund and Blomstrandhalvoya Island (Svalbard). Arctic 64:25-31. https://doi.org/10.14430/arctic4077
  12. Kim, G. H., Klochkova, T. A. & Kang, S. -H. 2008. Notes on freshwater and terrestrial algae from Ny-Alesund, Svalbard (high Arctic sea area). J. Environ. Biol. 29:485-491.
  13. Klochkova, T. A., Cho, G. -Y., Boo, S. M., Chung, K. W., Kim, S. J. & Kim, G. H. 2008. Interactions between marine facultative epiphyte Chlamydomonas sp. (Chlamydomonadales, Chlorophyta) and ceramiaceaen algae (Rhodophyta). J. Environ. Biol. 29:427-435.
  14. Klochkova, T. A., Kang, S. -H., Cho, G. Y., Pueschel, C. M., West, J. A. & Kim, G. H. 2006. Biology of a terrestrial green alga, Chlorococcum sp. (Chlorococcales, Chlorophyta), collected from the Miruksazi stupa in Korea. Phycologia 45:349-358. https://doi.org/10.2216/04-58.1
  15. McCarthy, C. 1996-1998. Chromas. Version 1.45 (32-bits). Nathan, Queensland: School of Health Science, Griffith University. Available from: http://technelysium.com.au/chromas.html. Accessed Dec 7, 2012.
  16. Montsant, A., Zarka, A. & Boussiba, S. 2001. Presence of a nonhydrolyzable biopolymer in cell wall of vegetative cells and astaxanthin-rich cysts of Haematococcus pluvialis (Chlorophyceae). Mar. Biotechnol. 3:515-521. https://doi.org/10.1007/s1012601-0051-0
  17. National Center for Biotechnology Information. 2013. Gen-Bank. Available from: http://www.ncbi.nlm.nih.gov. Accessed Mar 27, 2013.
  18. Pentecost, A. 2002. Order Volvocales. In John, D. M., Whitton, B. A. & Brook, A. J. (Eds.) The Freshwater Algal Flora of the British Isles: An Identification Guide to Freshwater and Terrestrial Algae. Cambridge University Press, Cambridge, pp. 303-327.
  19. Pocock, M. A. 1960. Haematococcus in southern Africa. Trans. R. Soc. S. Afr. 36:5-55. https://doi.org/10.1080/00359196009519031
  20. Rambaut, A. 2002. Se-Al: sequence alignment editor, version 2.0a11.Availablefrom:http://tree.bio.ed.ac.uk/software/seal. Accessed Mar 27, 2013.
  21. Reynolds, E. S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17:208-212. https://doi.org/10.1083/jcb.17.1.208
  22. Saunders, G. W., Potter, D., Paskind, M. P. & Andersen, R. A. 1995. Cladistic analyses of combined traditional and molecular data sets reveal an algal lineage. Proc. Natl. Acad. Sci. U. S. A. 92:244-248. https://doi.org/10.1073/pnas.92.1.244
  23. Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  24. Terauchi, M., Nagasato, C., Kajimura, N., Mineyuki, Y., Okuda, K., Katsaros, C. & Motomura, T. 2012. Ultrastructural study of plasmodesmata in the brown alga Dictyota dichotoma (Dictyotales, Phaeophyceae). Planta 236:1013-1026. https://doi.org/10.1007/s00425-012-1656-4
  25. Thompson, R. H. & Wujek, D. E. 1989. Haematococcus carocellus sp. nov. (Haematococcaceae, Chlorophyta) from the United States. Phycologia 28:268-270. https://doi.org/10.2216/i0031-8884-28-2-268.1

Cited by

  1. Accumulation of Astaxanthin by a New Haematococcus pluvialis Strain BM1 from the White Sea Coastal Rocks (Russia) vol.12, pp.8, 2014, https://doi.org/10.3390/md12084504
  2. Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products vol.7, 2016, https://doi.org/10.3389/fpls.2016.00531
  3. Modulation of photosynthetic activity and photoprotection in Haematococcus pluvialis cells during their conversion into haematocysts and back vol.128, pp.3, 2016, https://doi.org/10.1007/s11120-016-0246-x
  4. Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales vol.40, pp.6, 2017, https://doi.org/10.1007/s00300-016-2045-4
  5. Identification of three proteins involved in fertilization and parthenogenetic development of a brown alga, Scytosiphon lomentaria vol.240, pp.6, 2014, https://doi.org/10.1007/s00425-014-2148-5
  6. Parameterization of a light distribution model for green cell growth of microalgae: Haematococcus pluvialis cultured under red LED lights vol.23, 2017, https://doi.org/10.1016/j.algal.2016.12.018
  7. Interaction of TGA@CdTe Quantum Dots with an Extracellular Matrix of Haematococcus pluvialis Microalgae Detected Using Surface-Enhanced Raman Spectroscopy (SERS) vol.70, pp.9, 2016, https://doi.org/10.1177/0003702816654076
  8. A new insight into cell walls of Chlorophyta vol.25, 2017, https://doi.org/10.1016/j.algal.2017.04.008
  9. Species diversity in EuropeanHaematococcus pluvialis(Chlorophyceae, Volvocales) vol.54, pp.6, 2015, https://doi.org/10.2216/15-55.1
  10. Carotenogenic response in photosynthetic organisms: a colorful story vol.133, pp.1-3, 2017, https://doi.org/10.1007/s11120-017-0358-y
  11. Reduction of photosynthetic apparatus plays a key role in survival of the microalga Haematococcus pluvialis (Chlorophyceae) at freezing temperatures vol.56, pp.4, 2018, https://doi.org/10.1007/s11099-018-0841-5
  12. (Chlamydomonadales: Chlorophyta) from New Zealand vol.56, pp.2, 2018, https://doi.org/10.1080/0028825X.2018.1458737
  13. vol.2019, pp.2314-6141, 2019, https://doi.org/10.1155/2019/8101762
  14. Morphological, Molecular, and Biochemical Characterization of Astaxanthin-Producing Green Microalga Haematococcus sp. KORDI03 (Haematococcaceae, Chlorophyta) Isolated from Korea vol.25, pp.2, 2013, https://doi.org/10.4014/jmb.1410.10032
  15. Haematococcus lacustris : the makings of a giant-sized chloroplast genome vol.10, pp.5, 2013, https://doi.org/10.1093/aobpla/ply058
  16. Identification and Morphological-Physiological Characterization of Astaxanthin Producer Strains of Haematococcus pluvialis from the Black Sea Region vol.54, pp.6, 2018, https://doi.org/10.1134/s0003683818060078
  17. Cellular accumulation and cytotoxic effects of zinc oxide nanoparticles in microalga Haematococcus pluvialis vol.7, pp.None, 2013, https://doi.org/10.7717/peerj.7582
  18. Biomass and Astaxanthin Productivities of Haematococcus pluvialis in an Angled Twin-Layer Porous Substrate Photobioreactor: Effect of Inoculum Density and Storage Time vol.8, pp.3, 2013, https://doi.org/10.3390/biology8030068
  19. Effect of culturing parameters on the vegetative growth of Haematococcus alpinus (strain lcr‐cc‐261f) and modeling of its growth kinetics vol.55, pp.5, 2013, https://doi.org/10.1111/jpy.12889
  20. Propagation of Inoculum for Haematococcus pluvialis Microalgae Scale-Up Photobioreactor Cultivation System vol.10, pp.18, 2013, https://doi.org/10.3390/app10186283
  21. Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient vol.8, pp.10, 2013, https://doi.org/10.3390/jmse8100789
  22. Combined Production of Astaxanthin and β-Carotene in a New Strain of the Microalga Bracteacoccus aggregatus BM5/15 (IPPAS C-2045) Cultivated in Photobioreactor vol.10, pp.7, 2013, https://doi.org/10.3390/biology10070643