DOI QR코드

DOI QR Code

Astaxanthin in microalgae: pathways, functions and biotechnological implications

  • Han, Danxiang (Laboratory for Algae Research and Biotechnology, College of Technology and Innovation, Arizona State University Polytechnic Campus) ;
  • Li, Yantao (The Institute of Marine and Environmental Technology (IMET), The University of Maryland) ;
  • Hu, Qiang (Laboratory for Algae Research and Biotechnology, College of Technology and Innovation, Arizona State University Polytechnic Campus)
  • Received : 2013.04.15
  • Accepted : 2013.05.21
  • Published : 2013.06.15

Abstract

Major progress has been made in the past decade towards understanding of the biosynthesis of red carotenoid astaxanthin and its roles in stress response while exploiting microalgae-based astaxanthin as a potent antioxidant for human health and as a coloring agent for aquaculture applications. In this review, astaxanthin-producing green microalgae are briefly summarized with Haematococcus pluvialis and Chlorella zofingiensis recognized to be the most popular astaxanthin-producers. Two distinct pathways for astaxanthin synthesis along with associated cellular, physiological, and biochemical changes are elucidated using H. pluvialis and C. zofingiensis as the model systems. Interactions between astaxanthin biosynthesis and photosynthesis, fatty acid biosynthesis and enzymatic defense systems are described in the context of multiple lines of defense mechanisms working in concert against photooxidative stress. Major pros and cons of mass cultivation of H. pluvialis and C. zofingiensis in phototrophic, heterotrophic, and mixotrophic culture modes are analyzed. Recent progress in genetic engineering of plants and microalgae for astaxanthin production is presented. Future advancement in microalgal astaxanthin research will depend largely on genome sequencing of H. pluvialis and C. zofingiensis and genetic toolbox development. Continuous effort along the heterotrophic-phototrophic culture mode could lead to major expansion of the microalgal astaxanthin industry.

Keywords

References

  1. Aflalo, C., Meshulam, Y., Zarka, A. & Boussiba, S. 2007. On the relative efficiency of two-vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol. Bioeng. 98:300-305. https://doi.org/10.1002/bit.21391
  2. Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141:391-396. https://doi.org/10.1104/pp.106.082040
  3. Bar, E., Rise, M., Vishkautsan, M. & Arad, S. 1995. Pigment and structural changes in Chlorella zofingiensis upon and nitrogen stress. J. Plant Physiol. 146:527-534. https://doi.org/10.1016/S0176-1617(11)82019-5
  4. Barbosa, M. J., Morais, R. & Choubert, G. 1999. Effect of carotenoid source and dietary lipid content on blood astaxanthin concentration in rainbow trout (Oncorhynchus mykiss). Aquaculture 176:331-341. https://doi.org/10.1016/S0044-8486(99)00115-5
  5. Bidigare, R. R., Ondrusek, M. E., Kennicutt, M. C., Iturriaga, R., Harvey, H. R., Hoham, R. W. & Macko, S. A. 1993. Evidence for a photoprotective function for secondary carotenoids of snow algae. J. Phycol. 29:427-434. https://doi.org/10.1111/j.1529-8817.1993.tb00143.x
  6. Boussiba, S. 2000. Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant. 108:111-117. https://doi.org/10.1034/j.1399-3054.2000.108002111.x
  7. Boussiba, S., Bing, W., Yuan, J. -P., Zarka, A. & Chen, F. 1999. Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses. Biotechnol. Lett. 21:601-604. https://doi.org/10.1023/A:1005507514694
  8. Boussiba, S., Fan, L. & Vonshak, A. 1992. Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis. Methods Enzymol. 213:386-391. https://doi.org/10.1016/0076-6879(92)13140-S
  9. Boussiba, S. & Vonshak, A. 1991. Astaxanthin accumulation in the green alga Haematococcus pluvialis. Plant Cell Physiol. 32:1077-1082.
  10. Brinda, B. R., Sarada, R., Kamath, B. S., & Ravishankar, G. A. 2004. Accumulation of astaxanthin in flagellated cells of Haematococcus pluvialis - cultural and regulatory aspects. Curr. Sci. (Bangalore) 87:1290-1294.
  11. Bubrick, P. 1991. Production of astaxanthin from Haematococcus. Bioresour. Technol. 38:237-239. https://doi.org/10.1016/0960-8524(91)90161-C
  12. Carol, P., Stevenson, D., Bisanz, C., Breitenbach, J., Sandmann, G., Mache, R., Coupland, G. & Kuntz, M. 1999. Mutations in the Arabidopsis gene immutans cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell 11:57-68. https://doi.org/10.1105/tpc.11.1.57
  13. Carvalho, A. P., Meireles, L. A. & Malcata, F. X. 2006. Microalgal reactors: a review of enclosed system designs and performances. Biotechnol. Prog. 22:1490-1506. https://doi.org/10.1002/bp060065r
  14. Chandok, M. R., Sopory, S. K. & Oelmuller, R. 2001. Cytoplasmic kinase and phosphatase activities can induce PsaF gene expression in the absence of functional plastids: evidence that phosphorylation/dephosphorylation events are involved in interorganellar crosstalk. Mol. Gen. Genet. 264:819-826. https://doi.org/10.1007/s004380000371
  15. Chen, F., Chen, H. & Gong, X. 1997. Mixotrophic and heterotrophic growth of Haematococcus lacustris and rheological behaviour of the cell suspensions. Bioresour. Technol. 62:19-24. https://doi.org/10.1016/S0960-8524(97)00115-6
  16. Chen, G. 2007. Lipid and fatty acid composition and their biosyntheses in relation to carotenoid accumulation in the microalgae Nitzschia laevis (Bacillariophyceae) and Haematococcus pluvialis (Chlorophyceae). Ph.D. dissertation, The University of Hong Kong, Hong Kong, 150 pp.
  17. Chen, Y. -B., Durnford, D. G., Koblizek, M. & Falkowski, P. G. 2004. Plastid regulation of Lhcb1 transcription in the chlorophyte alga Dunaliella tertiolecta. Plant Physiol. 136:3737-3750. https://doi.org/10.1104/pp.104.038919
  18. Choi, Y. E., Yun, Y. -S. & Park, J. M. 2002. Evaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design. Biotechnol. Prog. 18:1170-1175. https://doi.org/10.1021/bp025549b
  19. Choi, Y. -E., Yun, Y. -S., Park, J. M. & Yang, J. -W. 2011. Determination of the time transferring cells for astaxanthin production considering two-stage process of Haematococcus pluvialis cultivation. Bioresour. Technol. 102:11249-11253. https://doi.org/10.1016/j.biortech.2011.09.092
  20. Cifuentes, A. S., Gonzalez, M. A., Vargas, S., Hoeneisen, M. & Gonzalez, N. 2003. Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biol. Res. 36:343-357.
  21. Cordero, B. F., Couso, I., Leon, R., Rodriguez, H. & Vargas, M. A. 2011. Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Appl. Microbiol. Biotechnol. 91:341-351. https://doi.org/10.1007/s00253-011-3262-y
  22. Cordero, B. F., Couso, I., Leon, R., Rodriguez, H. & Vargas, M. A. 2012. Isolation and characterization of a lycopene epsilon-cyclase gene of Chlorella (Chromochloris) zofingiensis: regulation of the carotenogenic pathway by nitrogen and light. Mar. Drugs 10:2069-2088. https://doi.org/10.3390/md10092069
  23. Cordero, B. F., Obraztsova, I., Martin, L., Couso, I., Leon, R., Vargas, M. A. & Rodriguez, H. 2010. Isolation and characterization of a lycopene ${\beta}$-cyclase gene from the astaxanthin-producing green alga Chlorella zofingiensis (Chlorophyta). J. Phycol. 46:1229-1238. https://doi.org/10.1111/j.1529-8817.2010.00907.x
  24. Cunningham, F. X. & Gantt, E. 1998. Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:557-583. https://doi.org/10.1146/annurev.arplant.49.1.557
  25. Cunningham, F. X., Pogson, B., Sun, Z., McDonald, K. A., DellaPenna, D. & Gantt, E. 1996. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8:1613-1626.
  26. Damiani, M. C., Leonardi, P. I., Pieroni, O. I. & Caceres, E. J. 2006. Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia 45:616-623. https://doi.org/10.2216/05-27.1
  27. Del Campo, J. A., Rodriguez, H., Moreno, J., Vargas, M. A., Rilight vas, J. & Guerrero, M. G. 2004. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl. Microbiol. Biotechnol. 64:848-854. https://doi.org/10.1007/s00253-003-1510-5
  28. Del Rio, E., Acien, F. G., Garcia-Malea, M. C., Rivas, J., Molina-Grima, E. & Guerrero, M. G. 2005. Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol. Bioeng. 91:808-815. https://doi.org/10.1002/bit.20547
  29. Del Rio, E., Acien, F. G., Garcia-Malea, M. C., Rivas, J., Molina-Grima, E. & Guerrero, M. G. 2008. Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis. Biotechnol. Bioeng. 100:397-402. https://doi.org/10.1002/bit.21770
  30. Disch, A., Schwender, J., Muller, C., Lichtenthaler, H. K. & Rohmer, M. 1998. Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem. J. 333:381-388. https://doi.org/10.1042/bj3330381
  31. Droop, M. R. 1954. Conditions governing haematochrome formation and loss in the alga Haematococcus pluvialis Flotow. Arch. Microbiol. 20:391-397.
  32. Elliot, A. M. 1934. Morphology and life history of Haematococcus pluvialis. Arch. Protistenk 82:250-272.
  33. Eom, H., Lee, C. G. & Jin, E. 2006. Gene expression profile analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. Planta 223:1231-1242. https://doi.org/10.1007/s00425-005-0171-2
  34. Fabregas, J., Otero, A., Maseda, A. & Dominguez, A. 2001. Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J. Biotechnol. 89:65-71. https://doi.org/10.1016/S0168-1656(01)00289-9
  35. Fan, L., Vonshak, A. & Boussiba, S. 1994. Effect of temperature and irradiance on growth of Haematococcus pluvialis (Chlorophyceae). J. Phycol. 30:829-833. https://doi.org/10.1111/j.0022-3646.1994.00829.x
  36. Fan, L., Vonshak, A., Zarka, A. & Boussiba, S. 1998. Does astaxanthin protect Haematococcus against light damage? Z. Naturforsch. C 53:93-100.
  37. Fey, V., Wagner, R., Brautigam, K. & Pfannschmidt, T. 2005. Photosynthetic redox control of nuclear gene expression. J. Exp. Bot. 56:1491-1498. https://doi.org/10.1093/jxb/eri180
  38. Fraser, P. D., Shimada, H. & Misawa, N. 1998. Enzymic confirmation of reactions involved in routes to astaxanthin formation, elucidated using a direct substrate in vitro assay. Eur. J. Biochem. 252:229-236. https://doi.org/10.1046/j.1432-1327.1998.2520229.x
  39. Garcia-Malea, M. C., Acien, F. G., Del Rio, E., Fernandez, J. M., Ceron, M. C., Guerrero, M. G. & Molina-Grima, E. 2009. Production of astaxanthin by Haematococcus pluvialis: taking the one-step system outdoors. Biotechnol. Bioeng. 102:651-657. https://doi.org/10.1002/bit.22076
  40. Green, J. 1963. Occurrence of astaxanthin in euglenoid Trachelomonas volvocina. Comp. Biochem. Physiol. 9:313-316. https://doi.org/10.1016/0010-406X(63)90006-9
  41. Grunewald, K., Eckert, M., Hirschberg, J. & Hagen, C. 2000. Phytoene desaturase is localized exclusively in the chloroplast and up-regulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales, Chlorophyceae). Plant Physiol. 122:1261-1268. https://doi.org/10.1104/pp.122.4.1261
  42. Grunewald, K., Hirschberg, J. & Hagen, C. 2001. Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J. Biol. Chem. 276:6023-6029. https://doi.org/10.1074/jbc.M006400200
  43. Grung, M., Metzger, P. & Liaaen-Jensen, S. 1994. Algal carotenoids 53: secondary carotenoids of algae 4. Secondary carotenoids in the green alga Botryococcus braunii, race L, new strain. Biochem. Syst. Ecol. 22:25-29. https://doi.org/10.1016/0305-1978(94)90111-2
  44. Guerin, M., Huntley, M. E. & Olaizola, M. 2003. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21:210-216. https://doi.org/10.1016/S0167-7799(03)00078-7
  45. Gutman, J., Zarka, A. & Boussiba, S. 2009. The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus pluvialis. Eur. J. Phycol. 44:509-514. https://doi.org/10.1080/09670260903161024
  46. Gutman, J., Zarka, A. & Boussiba, S. 2011. Evidence for the involvement of surface carbohydrates in the recognition of Haematococcus pluvialis by the parasitic blastoclad Paraphysoderma sedebokerensis. Fungal Biol. 115:803-811. https://doi.org/10.1016/j.funbio.2011.06.006
  47. Hagen, C., Braune, W. & Bjorn, L. O. 1994. Functional aspects of secondary carotenoids in Haematococcus lacustris (Volvocales). III. Action as a sunshade. J. Phycol. 30:241-248. https://doi.org/10.1111/j.0022-3646.1994.00241.x
  48. Hagen, C., Braune, W. & Greulich, F. 1993. Functional-aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales). IV. Protection from photodynamic damage. J. Photochem. Photobiol. B 20:153-160. https://doi.org/10.1016/1011-1344(93)80145-Y
  49. Hagen, C., Grunewald, K., Schmidt, S., & Muller, J. 2000. Accumulation of secondary carotenoids in flagellates of Haematococcus pluvialis (Chlorophyta) is accompanied by an increase in per unit chlorophyll productivity of photosynthesis. Eur. J. Phycol. 35:75-82. https://doi.org/10.1080/09670260010001735651
  50. Hagen, C., Siegmund, S. & Braune, W. 2008. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Vovocales, Chlorophyta) during aplanospore formation. Eur. J. Phycol. 37:217-226.
  51. Han, D., Wang, J., Sommerfeld, M. & Hu, Q. 2012. Susceptibility and potective mechanisms of motile and nonmotile cells of Haematococcus pluvialis (Chlorophyceae) to photooxidative stress. J. Phycol. 48:693-705. https://doi.org/10.1111/j.1529-8817.2012.01147.x
  52. Harker, M., Tsavalos, A. J. & Young, A. J. 1996a. Autotrophic growth and carotenoid production of Haematococcus Chlorophycepluvialis in a 30 liter air-lift photobioreactor. J. Ferment. Bioeng. 82:113-118. https://doi.org/10.1016/0922-338X(96)85031-8
  53. Harker, M., Tsavalos, A. J. & Young, A. J. 1996b. Factors responsible for astaxanthin formation in the chlorophyte Haematococcus pluvialis. Bioresour. Technol. 55:207-214. https://doi.org/10.1016/0960-8524(95)00002-X
  54. Hasunuma, T., Miyazawa, S. I., Yoshimura, S., Shinzaki, Y., Tomizawa, K. I., Shindo, K., Choi, S. K., Misawa, N. & Miyake, C. 2008. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J. 55:857-868. https://doi.org/10.1111/j.1365-313X.2008.03559.x
  55. Hata, N., Ogbonna, J. C., Hasegawa, Y., Taroda, H. & Tanaka, H. 2001. Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. J. Appl. Phycol. 13:395-402. https://doi.org/10.1023/A:1011921329568
  56. Hershkovits, G., Dubinsky, Z. & Katcoff, D. J. 1997. A novel homologue of the prokaryotic htrA gene is differentially expressed in the alga Haematococcus pluvialis following stress. Mol. Gen. Genet. 254:345-350. https://doi.org/10.1007/s004380050425
  57. Hoffman, Y., Aflalo, C., Zarka, A., Gutman, J., James, T. Y. & Boussiba, S. 2008. Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haermatococcus. Mycol. Res. 112:70-81. https://doi.org/10.1016/j.mycres.2007.09.002
  58. Holtin, K., Kuehnle, M., Rehbein, J., Schuler, P., Nicholson, G. & Albert, K. 2009. Determination of astaxanthin and astaxanthin esters in the microalgae Haematococcus pluvialis by LC-(APCI)MS and characterization of predominant carotenoid isomers by NMR spectroscopy. Anal. Bioanal. Chem. 395:1613-1622. https://doi.org/10.1007/s00216-009-2837-2
  59. Houille-Vernes, L., Rappaport, F., Wollman, F. A., Alric, J. & Johnson, X. 2011. Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. Proc. Natl. Acad. Sci. U. S. A. 108:20820-20825. https://doi.org/10.1073/pnas.1110518109
  60. Hu, Q., Sommerfeld, M. & Lu, F. 2006. Extractability and bioavailability of the natural antioxidant astaxanthin from a green alga, Haematococcus pluvialis. WIPO Patent No. 2006107736.
  61. Hu, Z., Li, Y., Sommerfeld, M. & Hu, Q. 2008. Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur. J. Phycol. 43:365-376. https://doi.org/10.1080/09670260802227736
  62. Huang, J. C., Chen, F. & Sandmann, G. 2006a. Stress-related differential expression of multiple ${\beta}$-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. J. Biotechnol. 122:176-185. https://doi.org/10.1016/j.jbiotec.2005.09.002
  63. Huang, J., Liu, J., Li, Y. & Chen, F. 2008. Isolation and characterization of the phytoene desaturase gene as a potential selective marker for genetic engineering of the astaxanthin-producing green alga Chlorella zofingiensis (Chlorophyta). J. Phycol. 44:684-690. https://doi.org/10.1111/j.1529-8817.2008.00511.x
  64. Huang, J. C., Wang, Y., Sandmann, G. & Chen, F. 2006b. Isolation and characterization of a carotenoid oxygenase gene from Chlorella zofingiensis (Chlorophyta). Appl. Microbiol. Biotechnol. 71:473-479. https://doi.org/10.1007/s00253-005-0166-8
  65. Huang, J. C., Zhong, Y. J., Sandmann, G., Liu, J. & Chen, F. 2012. Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants. Planta 236:691-699. https://doi.org/10.1007/s00425-012-1654-6
  66. Huss, V. A. R., Frank, C., Hartmann, E. C., Hirmer, M., Kloboucek, A., Seidel, B. M., Wenzeler, P. & Kessler, E. 1999. Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J. Phycol. 35:587-598. https://doi.org/10.1046/j.1529-8817.1999.3530587.x
  67. Ip, P. -F. & Chen, F. 2005a. Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem. 40:3491-3496. https://doi.org/10.1016/j.procbio.2005.02.014
  68. Ip, P. -F. & Chen, F. 2005b. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem. 40:733-738. https://doi.org/10.1016/j.procbio.2004.01.039
  69. Ip, P. -F., Wong, K. -H. & Chen, F. 2004. Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem. 39:1761-1766. https://doi.org/10.1016/j.procbio.2003.08.003
  70. Jayaraj, J., Devlin, R. & Punja, Z. 2008. Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res. 17:489-501. https://doi.org/10.1007/s11248-007-9120-0
  71. Johnson, E. A. & An, G. -H. 1991. Astaxanthin from microbial sources. Crit. Rev. Biotechnol. 11:297-326. https://doi.org/10.3109/07388559109040622
  72. Johnson, E. A. & Schroeder, W. A. 1996. Microbial carotenoids. Adv. Biochem. Eng. Biotechnol. 53:119-178.
  73. Kajiwara, S., Fraser, P. D., Kondo, K. & Misawa, N. 1997. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem. J. 324:421-426. https://doi.org/10.1042/bj3240421
  74. Kajiwara, S., Kakizono, T., Saito, T., Kondo, K., Ohtani, T., Nishio, N., Nagai, S. & Misawa, N. 1995. Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli. Plant Mol. Biol. 29:343-352. https://doi.org/10.1007/BF00043657
  75. Kang, C. D., Lee, J. S., Park, T. H. & Sim, S. J. 2005. Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 68:237-241. https://doi.org/10.1007/s00253-005-1889-2
  76. Kathiresan, S., Chandrashekar, A., Ravishankar, G. A. & Sarada, R. 2009. Agrobacterium-mediated transformation in the green alga Haematococcus pluvialis (Chlorophyceae, Volvocales). J. Phycol. 45:642-649. https://doi.org/10.1111/j.1529-8817.2009.00688.x
  77. Kim, D. -K., Hong, S. -J., Bae, J. -H., Yim, N., Jin, E. S. & Lee, C. -G. 2011. Transcriptomic analysis of Haematococcus lacustris during astaxanthin accumulation under high irradiance and nutrient starvation. Biotechnol. Bioprocess Eng. 16:698-705. https://doi.org/10.1007/s12257-011-0081-z
  78. Kobayashi, M., Kakizono, T. & Nagai, S. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microb. 59:867-873.
  79. Kobayashi, M., Kakizono, T., Nishio, N., Nagai, S., Kurimura, Y. & Tsuji, Y. 1997. Antioxidant role of astaxanthin in the green alga Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 48:351-356. https://doi.org/10.1007/s002530051061
  80. Kobayashi, M., Kakizono, T., Yamaguchi, K., Nishio, N. & Nagai, S. 1992. Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J. Ferment. Bioeng. 74:17-20. https://doi.org/10.1016/0922-338X(92)90261-R
  81. Kobayashi, M. & Sakamoto, Y. 1999. Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol. Lett. 21:265-269. https://doi.org/10.1023/A:1005445927433
  82. Krichnavaruk, S., Shotipruk, A., Goto, M. & Pavasant, P. 2008. Supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis with vegetable oils as cosolvent. Bioresour. Technol. 99:5556-5560. https://doi.org/10.1016/j.biortech.2007.10.049
  83. Lang, N. J. 1968. Electron microscopic studies of extraplastidic astaxanthin in Haematococcus. J. Phycol. 4:12-19. https://doi.org/10.1111/j.1529-8817.1968.tb04670.x
  84. Lee, Y. -K. & Ding, S. -Y. 1994. Cell cycle and accumulation of astaxanthin in Haematococcus lacustris (Chlorophyta). J. Phycol. 30:445-449. https://doi.org/10.1111/j.0022-3646.1994.00445.x
  85. Lemoine, Y. & Schoefs, B. 2010. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth. Res. 106:155-177. https://doi.org/10.1007/s11120-010-9583-3
  86. Leya, T., Rahn, A., Lutz, C. & Remias, D. 2009. Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol. Ecol. 67:432-443. https://doi.org/10.1111/j.1574-6941.2008.00641.x
  87. Li, J., Zhu, D., Niu, J., Shen, S. & Wang, G. 2011. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol. Adv. 29:568-574. https://doi.org/10.1016/j.biotechadv.2011.04.001
  88. Li, Y. 2007. The role of carotenogenesis in the response of the green alga Haematococcus pluvialis to oxidative stress. Ph.D. dissertation, The University of Hong Kong, Hong Kong, 157 pp.
  89. Li, Y., Huang, J., Sandmann, G. & Chen, F. 2008a. Glucose sensing and the mitochondrial alternative pathway are involved in the regulation of astaxanthin biosynthesis in the dark-grown Chlorella zofingiensis (Chlorophyceae). Planta 228:735-743. https://doi.org/10.1007/s00425-008-0775-4
  90. Li, Y., Huang, J., Sandmann, G. & Chen, F. 2009. High-light and sodium chloride stress differentially regulate the biosynthesis of astaxanthin in Chlorella zofingiensis (Chlorophyceae). J. Phycol. 45:635-641. https://doi.org/10.1111/j.1529-8817.2009.00689.x
  91. Li, Y., Sommerfeld, M., Chen, F. & Hu, Q. 2008b. Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J. Plant Physiol. 165:1783-1797. https://doi.org/10.1016/j.jplph.2007.12.007
  92. Li, Y., Sommerfeld, M., Chen, F. & Hu, Q. 2010. Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J. Appl. Phycol. 22:253-263. https://doi.org/10.1007/s10811-009-9453-6
  93. Lichtenthaler, H. K. 1999. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:47-65. https://doi.org/10.1146/annurev.arplant.50.1.47
  94. Lichtenthaler, H. K., Rohmer, M. & Schwender, J. 1997. Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol. Plant. 101:643-652. https://doi.org/10.1111/j.1399-3054.1997.tb01049.x
  95. Linden, H. 1999. Carotenoid hydroxylase from Haematococcus pluvialis: cDNA sequence, regulation and functional complementation. Biochim. Biophys. Acta 1446:203-212. https://doi.org/10.1016/S0167-4781(99)00088-3
  96. Liu, B. -H. & Lee, Y. -K. 2000. Secondary carotenoids formation by the green alga Chlorococcum sp. J. Appl. Phycol. 12:301-307. https://doi.org/10.1023/A:1008185212724
  97. Liu, J., Huang, J. & Chen, F. 2009. Metabolic engineering of Chlorella zofingiensis (Chlorophyta) for enhanced biosynthesis of astaxanthin. FEBS J. 276:S283.
  98. Liu, J., Huang, J., Sun, Z., Zhong, Y., Jiang, Y. & Chen, F. 2011. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour. Technol. 102:106-110. https://doi.org/10.1016/j.biortech.2010.06.017
  99. Liu, J., Sun, Z., Zhong, Y. J., Huang, J., Hu, Q. & Chen, F. 2012. Stearoyl-acyl carrier protein desaturase gene from the oleaginous microalga Chlorella zofingiensis: cloning, characterization and transcriptional analysis. Planta 236:1665-1676. https://doi.org/10.1007/s00425-012-1718-7
  100. Lorenz, R. T. & Cysewski, G. R. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 18:160-167. https://doi.org/10.1016/S0167-7799(00)01433-5
  101. Lotan, T. & Hirschberg, J. 1995. Cloning and expression in Escherichia coli of the gene encoding ${\beta}$-C-4-oxygenase, that converts ${\beta}$-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett. 364:125-128. https://doi.org/10.1016/0014-5793(95)00368-J
  102. Ma, R. Y. -N. & Chen, F. 2001. Enhanced production of free trans-astaxanthin by oxidative stress in the cultures of the green microalga Chlorococcum sp. Process Biochem. 36:1175-1179. https://doi.org/10.1016/S0032-9592(01)00157-1
  103. Mann, V., Harker, M., Pecker, I. & Hirschberg, J. 2000. Metabolic engineering of astaxanthin production in tobacco flowers. Nat. Biotechnol. 18:888-892. https://doi.org/10.1038/78515
  104. Mendes-Pinto, M. M., Raposo, M. F. J., Bowen, J., Young, A. J. & Morais, R. 2001. Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. J. Appl. Phycol. 13:19-24. https://doi.org/10.1023/A:1008183429747
  105. Miki, W. 1991. Biological functions and activities of animal carotenoids. Pure Appl. Chem. 63:141-146. https://doi.org/10.1351/pac199163010141
  106. Misawa, N. 2009. Pathway engineering of plants toward astaxanthin production. Plant Biotechnol. 26:93-99. https://doi.org/10.5511/plantbiotechnology.26.93
  107. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  108. Nobre, B., Marcelo, F., Passos, R., Beirao, L., Palavra, A., Gouveia, L. & Mendes, R. 2006. Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. Eur. Food Res. Technol. 223:787-790. https://doi.org/10.1007/s00217-006-0270-8
  109. Nott, A., Jung, H. S., Koussevitzky, S. & Chory, J. 2006. Plastid-to-nucleus retrograde signaling. Annu. Rev. Plant Biol. 57:739-759 https://doi.org/10.1146/annurev.arplant.57.032905.105310
  110. Ohlrogge, J. B. & Jaworski, J. G. 1997. Regulation of fatty acid synthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:109-136. https://doi.org/10.1146/annurev.arplant.48.1.109
  111. Olaizola, M. 2000. Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J. Appl. Phycol. 12:499-506. https://doi.org/10.1023/A:1008159127672
  112. Orosa, M., Torres, E., Fidalgo, P. & Abalde, J. 2000. Production and analysis of secondary carotenoids in green algae. J. Appl. Phycol. 12:553-556. https://doi.org/10.1023/A:1008173807143
  113. Qin, S., Liu, G. -X. & Hu, Z. -Y. 2008. The accumulation and metabolism of astaxanthin in Scenedesmus obliquus (Chlorophyceae). Process Biochem. 43:795-802. https://doi.org/10.1016/j.procbio.2008.03.010
  114. Qiu, B. S. & Li, Y. 2006. Photosynthetic acclimation and photoprotective mechanism of Haematococcus pluvialis (Chlorophyceae) during the accumulation of secondary carotenoids at elevated irradiation. Phycologia 45:117-126. https://doi.org/10.2216/04-99.1
  115. Remias, D., Karsten, U., Lutz, C. & Leya, T. 2010. Physiological and morphological processes in the alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243:73-86. https://doi.org/10.1007/s00709-010-0123-y
  116. Remias, D., Lutz-Meindl, U. & Lutz, C. 2005. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur. J. Phycol. 40:259-268. https://doi.org/10.1080/09670260500202148
  117. Rise, M., Cohen, E., Vishkautsan, M., Cojocaru, M., Gottlieb, H. E. & Arad, S. M. 1994. Accumulation of secondary carotenoids in Chlorella zofingiensis. J. Plant Physiol. 144:287-292. https://doi.org/10.1016/S0176-1617(11)81189-2
  118. Santos, M. F. & Mesquita, J. F. 1984. Ultrastructure study of Haematococcus lacustris (Girod.) Rostafinski (Volvocales) I. Some aspects of carotenogenesis. Cytologia 49:215-228. https://doi.org/10.1508/cytologia.49.215
  119. Sarada, R., Bhattacharya, S., Bhattacharya, S. & Ravishankar, G. A. 2002. A response surface approach for the production of natural pigment astaxanthin from green alga, Haematococcus pluvialis: effect of sodium acetate, culture age, and sodium chloride. Food Biotechnol. 16:107-120. https://doi.org/10.1081/FBT-120014322
  120. Sarada, R., Vidhyavathi, R., Usha, D. & Ravishankar, G. A. 2006. An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. J. Agric. Food Chem. 54:7585-7588. https://doi.org/10.1021/jf060737t
  121. Schoefs, B., Rmiki, N., Rachadi, J. & Lemoine, Y. 2001. Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acids. FEBS Lett. 500:125-128. https://doi.org/10.1016/S0014-5793(01)02596-0
  122. Steinbrenner, J. & Linden, H. 2001. Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol. 125:810-817. https://doi.org/10.1104/pp.125.2.810
  123. Steinbrenner, J. & Linden, H. 2003. Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol. Biol. 52:343-356. https://doi.org/10.1023/A:1023948929665
  124. Steinbrenner, J. & Sandmann, G. 2006. Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl. Environ. Microbiol. 72:7477-7484. https://doi.org/10.1128/AEM.01461-06
  125. Sun, N., Wang, Y., Li, Y. -T., Huang, J. -C. & Chen, F. 2008. Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem. 43:1288-1292. https://doi.org/10.1016/j.procbio.2008.07.014
  126. Sun, Z., Cunningham, F. X. & Gantt, E. 1998. Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. Proc. Natl. Acad. Sci. U. S. A. 95:11482-11488. https://doi.org/10.1073/pnas.95.19.11482
  127. Takeda, H. 1991. Sugar composition of the cell-wall and the taxonomy of Chlorella (Chlorophyceae). J. Phycol. 27:224-232. https://doi.org/10.1111/j.0022-3646.1991.00224.x
  128. Tan, S., Cunningham, F. X., Youmans, M., Grabowski, B., Sun, Z. & Gantt, E. 1995. Cytochrome f loss in astaxanthin-accumulating red cells of Haematococcus pluvialis (Chlorophyceae): comparison of photosynthetic activity, photosynthetic enzymes, and thylakoid membrane polypeptides in red and green cells. J. Phycol. 31:897-905. https://doi.org/10.1111/j.0022-3646.1995.00897.x
  129. Tjahjono, A. E., Hayama, Y., Kakizono, T., Terada, Y., Nishio, N. & Nagai, S. 1994. Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnol. Lett. 16:133-138. https://doi.org/10.1007/BF01021659
  130. Tran, D., Haven, J., Qiu, W. -G. & Polle, J. E. W. 2009a. An update on carotenoid biosynthesis in algae: phylogenetic evidence for the existence of two classes of phytoene synthase. Planta 229:723-729. https://doi.org/10.1007/s00425-008-0866-2
  131. Tran, N. -P., Park, J. -K. & Lee, C. -G. 2009b. Proteomics analysis of proteins in green alga Haematococcus lacustris (Chlorophyceae) expressed under combined stress of nitrogen starvation and high irradiance. Enzyme Microb. Technol. 45:241-246. https://doi.org/10.1016/j.enzmictec.2009.07.006
  132. Triki, A., Maillard, P. & Gudin, C. 1997. Gametogenesis in Haematococcus pluvialis Flotow (Volvocales, Chlorophyta). Phycologia 36:190-194. https://doi.org/10.2216/i0031-8884-36-3-190.1
  133. Ugwu, C. U., Aoyagi, H. & Uchiyama, H. 2008. Photobioreactors for mass cultivation of algae. Bioresour. Technol. 99:4021-4028. https://doi.org/10.1016/j.biortech.2007.01.046
  134. Vanlerberghe, G. C. & McIntosh, L. 1996. Signals regulating the expression of the nuclear gene encoding alternative oxidase of plant mitochondria. Plant Physiol. 111:589-595. https://doi.org/10.1104/pp.111.2.589
  135. Vechtel, B., Kahmann, U. & Ruppel, H. G. 1992. Secondary carotenoids of Eremosphaera viridis De Bary (Chlorophyceae) under nitrogen deficiency. Bot. Acta 105:219-222. https://doi.org/10.1111/j.1438-8677.1992.tb00290.x
  136. Vershinin, A. 1999. Biological functions of carotenoids: diversity and evolution. Biofactors 10:99-104. https://doi.org/10.1002/biof.5520100203
  137. Vidhyavathi, R., Venkatachalam, L., Sarada, R. & Ravishankar, G. A. 2008. Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J. Exp. Bot. 59:1409-1418. https://doi.org/10.1093/jxb/ern048
  138. Wang, B., Zarka, A., Trebst, A. & Boussiba, S. 2003. Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J. Phycol. 39:1116-1124. https://doi.org/10.1111/j.0022-3646.2003.03-043.x
  139. Wang, C. W., Oh, M. K. & Liao, J. C. 1999. Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol. Bioeng. 62:235-241. https://doi.org/10.1002/(SICI)1097-0290(19990120)62:2<235::AID-BIT14>3.0.CO;2-U
  140. Wang, J., Han, D., Sommerfeld, M. R., Lu, C. & Hu, Q. 2013. Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. J. Appl. Phycol. 25:253-260. https://doi.org/10.1007/s10811-012-9859-4
  141. Wang, J., Sommerfeld, M. & Hu, Q. 2009. Occurrence and environmental stress responses of two plastid terminal oxidases in Haematococcus pluvialis (Chlorophyceae). Planta 230:191-203. https://doi.org/10.1007/s00425-009-0932-4
  142. Wang, J., Sommerfeld, M. & Hu, Q. 2011. Cloning and expression of isoenzymes of superoxide dismutase in Haematococcus pluvialis (Chlorophyceae) under oxidative stress. J. Appl. Phycol. 23:995-1003. https://doi.org/10.1007/s10811-010-9631-6
  143. Wang, S. B., Chen, F., Sommerfeld, M. & Hu, Q. 2004a. Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 220:17-29. https://doi.org/10.1007/s00425-004-1323-5
  144. Wang, S. B., Chen, F., Sommerfeld, M. & Hu, Q. 2005. Isolation and proteomic analysis of cell wall-deficient Haematococcus pluvialis mutants. Proteomics 5:4839-4851. https://doi.org/10.1002/pmic.200400092
  145. Wang, S. B., Hu, Q., Sommerfeld, M. & Chen, F. 2004b. Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae). Proteomics 4:692-708. https://doi.org/10.1002/pmic.200300634
  146. Wang, Y. & Chen, T. 2008. The biosynthetic pathway of carotenoids in the astaxanthin-producing green alga Chlorella zofingiensis. World J. Microbiol. Biotechnol. 24:2927-2932. https://doi.org/10.1007/s11274-008-9834-z
  147. Wu, D. Y., Wright, D. A., Wetzel, C., Voytas, D. F. & Rodermel, S. 1999. The immutans variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11:43-55. https://doi.org/10.1105/tpc.11.1.43
  148. Yuan, J. -P., Gong, X. -D. & Chen, F. 1997. Separation and analysis of carotenoids and chlorophylls in Haematococcus lacustris by high-performance liquid chromatography photodiode array detection. J. Agric. Food Chem. 45:1952-1956. https://doi.org/10.1021/jf970002b
  149. Zhang, X. W., Gong, X. -D. & Chen, F. 1999. Kinetic models for astaxanthin production by high cell density mixotrophic culture of the microalga Haematococcus pluvialis. J. Ind. Microbiol. Biotechnol. 23:691-696. https://doi.org/10.1038/sj.jim.2900685
  150. Zhekisheva, M., Boussiba, S., Khozin-Goldberg, I., Zarka, A. & Cohen, Z. 2002. Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J. Phycol. 38:325-331. https://doi.org/10.1046/j.1529-8817.2002.01107.x
  151. Zhong, Y. -J., Huang, J. -C., Liu, J., Li, Y., Jiang, Y., Xu, Z. -F., Sandmann, G. & Chen, F. 2011. Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. J. Exp. Bot. 62:3659-3669. https://doi.org/10.1093/jxb/err070
  152. Zlotnik, I., Sukenik, A. & Dubinsky, Z. 1993. Physiological and photosynthetic changes during the formation of red aplanospores in the Chlorophyte Haematococcus pluvialis. J. Phycol. 29:463-469. https://doi.org/10.1111/j.1529-8817.1993.tb00147.x

Cited by

  1. Enhanced astaxanthin production from a novel strain of Haematococcus pluvialis using fulvic acid vol.50, pp.12, 2015, https://doi.org/10.1016/j.procbio.2015.09.004
  2. Regenerative Astaxanthin Extraction from a Single Microalgal (Haematococcus pluvialis) Cell Using a Gold Nano-Scalpel vol.7, pp.40, 2015, https://doi.org/10.1021/acsami.5b07651
  3. Enhanced Accumulation of Carbohydrate and Starch in Chlorella zofingiensis Induced by Nitrogen Starvation vol.174, pp.7, 2014, https://doi.org/10.1007/s12010-014-1183-9
  4. A novel optical/electrochemical biosensor for real time measurement of physiological effect of astaxanthin on algal photoprotection vol.241, 2017, https://doi.org/10.1016/j.snb.2016.10.115
  5. Species diversity in EuropeanHaematococcus pluvialis(Chlorophyceae, Volvocales) vol.54, pp.6, 2015, https://doi.org/10.2216/15-55.1
  6. Potential biotechnological application of microalgae: a critical review vol.37, pp.1, 2017, https://doi.org/10.3109/07388551.2015.1108956
  7. Dynamic modelling of Haematococcus pluvialis photoinduction for astaxanthin production in both attached and suspended photobioreactors vol.13, 2016, https://doi.org/10.1016/j.algal.2015.11.019
  8. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases vol.13, pp.8, 2015, https://doi.org/10.3390/md13085128
  9. UV-C mediated rapidcarotenoid induction and settling performance ofDunaliellasalinaandHaematococcus pluvialis vol.112, pp.10, 2015, https://doi.org/10.1002/bit.25621
  10. Intraspecific trait variation affecting astaxanthin productivity in two Haematococcus (Chlorophyceae) species vol.21, 2017, https://doi.org/10.1016/j.algal.2016.10.021
  11. Comparison of astaxanthin accumulation and biosynthesis gene expression of three Haematococcus pluvialis strains upon salinity stress vol.27, pp.5, 2015, https://doi.org/10.1007/s10811-014-0491-3
  12. Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell vol.125, pp.3, 2015, https://doi.org/10.1007/s11120-015-0156-3
  13. Enhanced astaxanthin production from Haematococcus pluvialis using butylated hydroxyanisole vol.236, 2016, https://doi.org/10.1016/j.jbiotec.2016.08.019
  14. Rapid chemotaxonomic profiling for the identification of high-value carotenoids in microalgae 2018, https://doi.org/10.1007/s10811-017-1247-7
  15. Cellular Capacities for High-Light Acclimation and Changing Lipid Profiles across Life Cycle Stages of the Green Alga Haematococcus pluvialis vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0106679
  16. Production of ketocarotenoids in tobacco alters the photosynthetic efficiency by reducing photosystem II supercomplex and LHCII trimer stability vol.123, pp.2, 2015, https://doi.org/10.1007/s11120-014-0055-z
  17. Challenges and opportunities for microalgae-mediated CO2capture and biorefinery vol.112, pp.7, 2015, https://doi.org/10.1002/bit.25619
  18. Astaxanthin as feed supplement in aquatic animals 2017, https://doi.org/10.1111/raq.12200
  19. Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis inHaematococcus pluvialis(Chlorophyceae) vol.81, pp.1, 2015, https://doi.org/10.1111/tpj.12713
  20. Effect of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid on different growth stages of Haematococcus pluvialis vol.220, 2016, https://doi.org/10.1016/j.biortech.2016.08.046
  21. A review of carotenoid utilisation and function in crustacean aquaculture vol.9, pp.2, 2017, https://doi.org/10.1111/raq.12109
  22. Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol vol.92, 2014, https://doi.org/10.1016/j.supflu.2014.05.013
  23. The role of photorespiration during astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) vol.107, 2016, https://doi.org/10.1016/j.plaphy.2016.05.029
  24. Metabolite Profiling and Integrative Modeling Reveal Metabolic Constraints for Carbon Partitioning under Nitrogen Starvation in the Green AlgaeHaematococcus pluvialis vol.289, pp.44, 2014, https://doi.org/10.1074/jbc.M114.555144
  25. Breaking dormancy: an energy-efficient means of recovering astaxanthin from microalgae vol.17, pp.2, 2015, https://doi.org/10.1039/C4GC01413H
  26. A Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids and Carotenoids vol.7, 2016, https://doi.org/10.3389/fmicb.2016.00546
  27. Media Screening for Obtaining Haematococcus pluvialis Red Motile Macrozooids Rich in Astaxanthin and Fatty Acids vol.7, pp.1, 2017, https://doi.org/10.3390/biology7010002
  28. vol.124, pp.2, 2018, https://doi.org/10.1111/jam.13643
  29. Integration of biology, ecology and engineering for sustainable algal-based biofuel and bioproduct biorefinery vol.5, pp.1, 2018, https://doi.org/10.1186/s40643-018-0233-5
  30. Reduction of photosynthetic apparatus plays a key role in survival of the microalga Haematococcus pluvialis (Chlorophyceae) at freezing temperatures vol.56, pp.4, 2018, https://doi.org/10.1007/s11099-018-0841-5
  31. Synthesis of Microaglae-Capturing Magnetic Microcapsule Using CaCO3 Microparticles and Layer-by-Layer Coating vol.28, pp.7, 2018, https://doi.org/10.3740/MRSK.2018.28.7.376
  32. A strategy for boosting astaxanthin accumulation in green microalga Haematococcus pluvialis by using combined diethyl aminoethyl hexanoate and high light pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1561-8
  33. Oxidation evaluation of free astaxanthin and astaxanthin esters in Pacific white shrimp during iced storage and frozen storage vol.99, pp.5, 2019, https://doi.org/10.1002/jsfa.9417
  34. Enhancing production of microalgal biopigments through metabolic and genetic engineering pp.1549-7852, 2020, https://doi.org/10.1080/10408398.2018.1533518
  35. Development of a new wastewater treatment process for resource recovery of carotenoids vol.72, pp.7, 2013, https://doi.org/10.2166/wst.2015.330
  36. 미세조류로부터의 에너지 효율적인 Astaxanthin 회수 기술 개발 vol.56, pp.3, 2018, https://doi.org/10.9713/kcer.2018.56.3.376
  37. Genome and Transcriptome Sequencing of the Astaxanthin-Producing Green Microalga, Haematococcus pluvialis vol.11, pp.1, 2013, https://doi.org/10.1093/gbe/evy263
  38. Biolistic Transformation of Haematococcus pluvialis With Constructs Based on the Flanking Sequences of Its Endogenous Alpha Tubulin Gene vol.10, pp.None, 2013, https://doi.org/10.3389/fmicb.2019.01749
  39. Light Elicits Astaxanthin Biosynthesis and Accumulation in the Fermented Ultrahigh-Density Chlorella zofinginesis vol.67, pp.19, 2013, https://doi.org/10.1021/acs.jafc.9b01176
  40. Nutrient Deprivation-Associated Changes in Green Microalga Coelastrum sp. TISTR 9501RE Enhanced Potent Antioxidant Carotenoids vol.17, pp.6, 2013, https://doi.org/10.3390/md17060328
  41. Improved astaxanthin production by Xanthophyllomyces dendrorhous SK984 with oak leaf extract and inorganic phosphate supplementation vol.28, pp.4, 2013, https://doi.org/10.1007/s10068-019-00604-w
  42. One-Pot, Simultaneous Cell Wall Disruption and Complete Extraction of Astaxanthin from Haematococcus pluvialis at Room Temperature vol.7, pp.16, 2013, https://doi.org/10.1021/acssuschemeng.9b02089
  43. Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress vol.23, pp.None, 2013, https://doi.org/10.1016/j.btre.2019.e00351
  44. Safe and Complete Extraction of Astaxanthin from Haematococcus pluvialis by Efficient Mechanical Disruption of Cyst Cell Wall vol.15, pp.10, 2013, https://doi.org/10.1515/ijfe-2019-0128
  45. Safe and Complete Extraction of Astaxanthin from Haematococcus pluvialis by Efficient Mechanical Disruption of Cyst Cell Wall vol.15, pp.10, 2013, https://doi.org/10.1515/ijfe-2019-0128
  46. Microalgal Carotenoids: A Review of Production, Current Markets, Regulations, and Future Direction vol.17, pp.11, 2013, https://doi.org/10.3390/md17110640
  47. Studies on Woloszynskioid Dinoflagellates X: Ultrastructure, Phylogeny and Colour Variation in Tovellia rubescens n. sp. (Dinophyceae) vol.66, pp.6, 2013, https://doi.org/10.1111/jeu.12745
  48. Engineering microalgae through chloroplast transformation to produce high‐value industrial products vol.67, pp.1, 2013, https://doi.org/10.1002/bab.1823
  49. Linoleic-acid-enhanced astaxanthin content of Chlorella sorokiniana (Chlorophyta) under normal and light shock conditions vol.59, pp.1, 2013, https://doi.org/10.1080/00318884.2019.1670012
  50. Recovery of Astaxanthin-Containing Oil from Haematococcus pluvialis by Nano-dispersion and Oil Partitioning vol.190, pp.4, 2013, https://doi.org/10.1007/s12010-019-03167-y
  51. Microbial astaxanthin biosynthesis: recent achievements, challenges, and commercialization outlook vol.104, pp.13, 2013, https://doi.org/10.1007/s00253-020-10648-2
  52. Chloroplast Genetic Engineering of a Unicellular Green Alga Haematococcus pluvialis with Expression of an Antimicrobial Peptide vol.22, pp.4, 2013, https://doi.org/10.1007/s10126-020-09978-z
  53. High-throughput fluorescence-activated cell sorting for cell wall-deficient microalgal mutants screening vol.50, pp.None, 2013, https://doi.org/10.1016/j.algal.2020.102011
  54. Astaxanthin and other Nutrients from Haematococcus pluvialis —Multifunctional Applications vol.18, pp.9, 2013, https://doi.org/10.3390/md18090459
  55. Application of Astaxanthin and its Lipid Stability in Bakery Product vol.8, pp.3, 2013, https://doi.org/10.12944/crnfsj.8.3.24
  56. The Dynamics of the Bacterial Community of the Photobioreactor-Cultivated Green Microalga Haematococcus lacustris during Stress-Induced Astaxanthin Accumulation vol.10, pp.2, 2021, https://doi.org/10.3390/biology10020115
  57. A Review on Haematococcus pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin vol.11, pp.2, 2013, https://doi.org/10.3390/biom11020256
  58. Functional divergence of diacylglycerol acyltransferases in the unicellular green alga Haematococcus pluvialis vol.72, pp.2, 2013, https://doi.org/10.1093/jxb/eraa451
  59. Electric Stimulation of Astaxanthin Biosynthesis in Haematococcus pluvialis vol.11, pp.8, 2013, https://doi.org/10.3390/app11083348
  60. Xanthophylls from the Sea: Algae as Source of Bioactive Carotenoids vol.19, pp.4, 2013, https://doi.org/10.3390/md19040188
  61. Combined Production of Astaxanthin and β-Carotene in a New Strain of the Microalga Bracteacoccus aggregatus BM5/15 (IPPAS C-2045) Cultivated in Photobioreactor vol.10, pp.7, 2013, https://doi.org/10.3390/biology10070643
  62. Food Ingredients and Nutraceuticals from Microalgae: Main Product Classes and Biotechnological Production vol.10, pp.7, 2013, https://doi.org/10.3390/foods10071626
  63. Role of copper in the enhancement of astaxanthin and lipid coaccumulation in Haematococcus pluvialis exposed to abiotic stress conditions vol.335, pp.None, 2013, https://doi.org/10.1016/j.biortech.2021.125265
  64. Interaction between the cell walls of microalgal host and fungal carbohydrate‐activate enzymes is essential for the pathogenic parasitism process vol.23, pp.9, 2013, https://doi.org/10.1111/1462-2920.15465
  65. Microalgae Xanthophylls: From Biosynthesis Pathway and Production Techniques to Encapsulation Development vol.10, pp.11, 2013, https://doi.org/10.3390/foods10112835
  66. Potential role of nitrogen in spore dispersal and infection of Paraphysoderma sedebokerense, a fungal parasite of Haematococcus pluvialis vol.60, pp.None, 2013, https://doi.org/10.1016/j.algal.2021.102552
  67. The oleaginous astaxanthin-producing alga Chromochloris zofingiensis: potential from production to an emerging model for studying lipid metabolism and carotenogenesis vol.14, pp.1, 2021, https://doi.org/10.1186/s13068-021-01969-z
  68. Enhanced β-carotene and Biomass Production by Induced Mixotrophy in Dunaliella salina across a Combined Strategy of Glycerol, Salinity, and Light vol.11, pp.12, 2021, https://doi.org/10.3390/metabo11120866
  69. Critical assessment of the filamentous green microalga Oedocladium carolinianum for astaxanthin and oil production vol.61, pp.None, 2013, https://doi.org/10.1016/j.algal.2021.102599
  70. Enhancing astaxanthin and lipid coproduction in Haematococcus pluvialis by the combined induction of plant growth regulators and multiple stresses vol.344, pp.no.pa, 2013, https://doi.org/10.1016/j.biortech.2021.126225
  71. Enhancement of astaxanthin accumulation in Haematococcus pluvialis by exogenous oxaloacetate combined with nitrogen deficiency vol.345, pp.None, 2013, https://doi.org/10.1016/j.biortech.2021.126484