DOI QR코드

DOI QR Code

Medium optimization for keratinase production by a local Streptomyces sp. NRC 13S under solid state fermentation

  • Received : 2012.12.24
  • Accepted : 2013.04.11
  • Published : 2013.06.30

Abstract

Thirteen different Streptomyces isolates were evaluated for their ability to produce keratinase using chicken feather as a sole carbon and nitrogen sources under solid state fermentation (SSF). Streptomyces sp. NRC 13S produced the highest keratinase activity [1,792 U/g fermented substrate (fs)]. The phenotypic characterization and analysis of 16S rDNA sequencing of the isolate were studied. Optimization of SSF medium for keratinase production by the local isolate, Streptomyces sp. NRC13S, was carried out using the one-variable-at-a-time and the statistical approaches. In the first optimization step, the effect of incubation period, initial moisture content, initial pH value of the fermentation medium, and supplementation of some agro-industrial by-products on keratinase production were evaluated. The strain produced about 2,310 U/gfs when it grew on chicken feather with moisture content of 75% (w/w), feather: fodder yeast ratio of 70:30 (w/w), and initial pH 7 using phosphate buffer after 8 days. Based on these results, the Box-Behnken design and response surface methodology were applied to find out the optimal conditions for the enzyme production. The corresponding maximal production of keratinase was about 2,569.38 U/gfs.

Keywords

References

  1. Adinarayana K and Suren S (2005) Response surface optimization of enzymatic hydrolysis of maize starch for higher glucose production. Biochem Eng J 27, 179-90. https://doi.org/10.1016/j.bej.2005.08.027
  2. Anbu P, Hilda A, Sur HW, Hur BK and Jayanthi S (2008) Extracellular keratinase from Trichophyton sp. HA-2 isolated from feather dumping soil. Int Biodeterior Biodegrad 62, 287-92. https://doi.org/10.1016/j.ibiod.2007.07.017
  3. Bertsch A and Coello N (2005) A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Bioresour Technol 96, 1703-8. https://doi.org/10.1016/j.biortech.2004.12.026
  4. Box GEP and Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2, 455-75. https://doi.org/10.1080/00401706.1960.10489912
  5. Cai CG, Lou BG and Zheng XD (2008) Keratinase production and keratin degradation by mutant strain of Bacillus subtilis. J Zhejiang University Science 1, 60-7.
  6. Cortezi M, Contiero J, Lima CJB, Lovaglio RB and Monti R (2008) Characterization of a feather degrading by Bacillus amyloliquefaciens protease: A new strain. World J Agric Sci 4, 648-56.
  7. De Azeredo LAI, De Lima MB, Coelho RRR and Freire DMG (2005) Thermophilic protease production by Streptomyces sp. 594 in submerged and solid-state fermentation using feather meal. J Appl Microbiol 100, 641-7.
  8. De Azeredo LAI, De Lima MB, Coelho RRR and Freire DMG (2006) Lowcost fermentation medium for thermophilic protease production by Streptomyces sp. 594 using feather meal and steep liquor. Curr Microbiol 53, 335-9. https://doi.org/10.1007/s00284-006-0163-x
  9. Diaz J, Rodriguez A, Roussos S, Cordova J, Abousalham A, Carriere F et al. (2006) Lipase from thermo tolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme Microb Technol 39, 1042-50. https://doi.org/10.1016/j.enzmictec.2006.02.005
  10. Essien JP, Umoh AA, Akpan EJ, Eduok SI and Umoiyoho A (2009) Growth, keratinolytic proteinase activity and thermotolerance of dermatophytes associated with alopecia in Uyo. Nigeria Acta Microbiologica Et Immunologic Hungarica 56, 61-9. https://doi.org/10.1556/AMicr.56.2009.1.4
  11. Ertan F, Balkan B, Balkan S and Aktac T (2006) Solid state fermentation for the production of á-amylase from Penicillium chrysogenum using mixed agricultural by-products as substrate. Biologia 61, 657-61. https://doi.org/10.2478/s11756-006-0137-2
  12. Farid MA and Shata HMA (2011) Amylase production from Aspergillus oryzae LS1 by solid-state fermentation and its use for the hydrolysis of wheat flour. Iranian J Biotechnol 9(4), 267-74.
  13. Farid MA, Ghoneimy EA, El-Khawaga MA, Ahmed AN and Awad GE (2012) Statistical optimization of glucose oxidase production from Aspergillus niger NRC9 under submerged fermentation using response surface methodology. Ann Microbiol in press.
  14. Francis F, Sabu A, Nampoothiri KM, Ramachandran S, Ghosh S, Szakacs G et al.(2003) Use of response surface methodology for optimizing process parameters for the production of á-amylase by Aspergillus oryzae. Biochem Eng J 15, 107-15. https://doi.org/10.1016/S1369-703X(02)00192-4
  15. Friedrich AB and Antranikian G (1996) Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl Environ Microbiol 62, 2875-82.
  16. FriedrichJ, Gradisar H, Mandin D and Chaumont JP (1999) Screening fungi for synthesis of kerationlytic enzymes. Lett Appl Microbiol 28, 127-30. https://doi.org/10.1046/j.1365-2672.1999.00485.x
  17. Gassesse A, Kaul RH, Gashe BA and Mattiasson B (2003) Novel alkaline protease from alkalophilic bacteria grown on chicken feather. Enzyme Microbial Technol 32, 519-24. https://doi.org/10.1016/S0141-0229(02)00324-1
  18. Gioppo NMR, Moreira-Gasparin F, Costa AM, Alexanddrio AM, Souza CGM and Peralta RM (2009) Influence of the carbon and nitrogen sources on keratinase production by Myrothecium verrucariain submerged and solid state cultures. J Ind Microbial Biotech 36, 705-11. https://doi.org/10.1007/s10295-009-0540-0
  19. Gousterova A, Braikova D, Goshev I, Christov P, Tishinov K, Vasileva- Tonkova E et al. (2005) Degradation of keratin and collagen containing wastes by newly isolated thermo actinomycetes or by alkaline hydrolysis. Lett Appl Microbiol 40(5), 335-40. https://doi.org/10.1111/j.1472-765X.2005.01692.x
  20. Gradisar H, Kern S and Friedrich J (2000) Keratinase of Deratomyces microsporus. Appl Microbiol Biotechnol 53, 196-200. https://doi.org/10.1007/s002530050008
  21. Gupta R, Beg QK and Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59, 15-32. https://doi.org/10.1007/s00253-002-0975-y
  22. Gupta R and Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70, 21-33. https://doi.org/10.1007/s00253-005-0239-8
  23. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41, 95-8.
  24. Hesseltine CW (1979) Solid-state fermentation: an overview. Int Biodeterior 23, 79-89.
  25. Himabindu M, Ravichandra P, Vishalakshi K and Annapurna J (2006) Optimization of critical medium components for the maximal production of gentamicin by Micromonospora echinospora ATCC 15838 using response surface methodology. Appl Biochem Biotechnol 134(2), 143-154. https://doi.org/10.1385/ABAB:134:2:143
  26. Hmidet N, Ali NE, Zouari-Fakhfakh N, Haddar A, Nasri M and Sellemi-Kamoun A (2010) Chicken feathers: a complex substrate for the coproduction of a-amylase and proteases by B. licheniformisNH1. J Ind Microbiol Biotechnol 37, 983-90. https://doi.org/10.1007/s10295-010-0792-8
  27. Kennedy M and Krouse D (1999) Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biotechnol 23, 456-75. https://doi.org/10.1038/sj.jim.2900755
  28. Krishna C (2005) Solid-state fermentation systems. An overview. Crit Rev Biotechnol 25, 1-30. https://doi.org/10.1080/07388550590925383
  29. Lazim H, Mankai H, Salma N, Barakallah I and Limam F (2009) Production and optimization of thermophilic alkaline protease in solid-state fermentation by Streptomyces sp. CN902. J Ind Microbiol Biotechnol 36, 531-7. https://doi.org/10.1007/s10295-008-0523-6
  30. Lowry OH, Rosenbrourgh NJ, Farr NJ and Randall JR (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265-75.
  31. Macedo AJ, Da Silva WO, Gava R, Driemeier D, Henriques JA and Termignoni C (2005) Novel keratinase from Bacillus subtilis S14 exhibiting remarkable dehairing capabilities. Appl Environ Microbiol 71, 594-6. https://doi.org/10.1128/AEM.71.1.594-596.2005
  32. Manczinger L, Rozs M, Vagvolgyi C and Kevei F (2003) Isolation and characterization of a new keratinolytic Bacillus licheniformis strain. World J Microbiol Biotechnol 19, 35-9. https://doi.org/10.1023/A:1022576826372
  33. Mehta VJ, Thumar JT and Singh SP (2006) Production of alkaline protease from an alkaliphilic actinomycete. Bioresour Technol 97, 1650-4. https://doi.org/10.1016/j.biortech.2005.07.023
  34. Moon SH and Parulekar SJ (1991) A parametric study of protein production in batch and fed-batch culture of B. wrmus. Biotechnol Bioeng 37, 467-83. https://doi.org/10.1002/bit.260370509
  35. MukherjeeAK, Adhikari H and RaiSK (2008) Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using Imperata cylindrica grass, and potato peel as low-cost medium: Characterization and application of enzyme in detergent formulation. Biochem Eng J 39, 353-61. https://doi.org/10.1016/j.bej.2007.09.017
  36. Nam GW, Lee DW, Lee HS, Lee NJ, Kim BC, Choe EA et al.(2002) Native feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase producing thermophilic anaerobe. Arch Microbiol 178, 538-47. https://doi.org/10.1007/s00203-002-0489-0
  37. Nehra KS, Dhillon S, Kamala C and Randir S (2002) Production of alkaline protease by Aspergillus sp. under submerged and solid substrate fermentation. Ind J Microbiol 42, 43-7.
  38. Onifade AA, Al-Sane NA, Al-Musallam AA and Al-Zarban S (1998) A review: Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour Technol 66, 1-11. https://doi.org/10.1016/S0960-8524(98)00033-9
  39. Pandey A (1992) Recent developments in solid-state fermentation. Process Biochem 27, 109-17. https://doi.org/10.1016/0032-9592(92)80017-W
  40. Pereira FB, Guimaraes PMR, Teixeira JA and Domingues L (2010) Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs. Bioresour Technol 101, 7856-63. https://doi.org/10.1016/j.biortech.2010.04.082
  41. Pillai, P and Archana G (2008) Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Appl Microbiol Biotechnol 78, 643-50. https://doi.org/10.1007/s00253-008-1355-z
  42. Rathi P, Goswami VK, Sahai V and Gupta R (2002) Statistical medium optimization and production of a hyper thermostable lipase from Burkholderia cepacia in bioreactor. J Appl Microbiol 93, 930-6. https://doi.org/10.1046/j.1365-2672.2002.01780.x
  43. Riffel A, Ortolan S and Brandelli A (2003) Unhairing activity of extracellular proteases produced by keratinolytic bacteria. J Chem Technol Biotechnol 78, 855-9. https://doi.org/10.1002/jctb.828
  44. Rissen S and Antranikian G (2001) Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles 5, 399-408. https://doi.org/10.1007/s007920100209
  45. Sandhya C, Sumantha A, Szakacs G and Pandy A (2005) Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem 40, 2689-94. https://doi.org/10.1016/j.procbio.2004.12.001
  46. Senthilkumar SR, Ashokkumar B, Chandra Raj K and Gunasekaran P (2005) Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresour Technol 96, 1380-6. https://doi.org/10.1016/j.biortech.2004.11.005
  47. Shirling EB and Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16, 313-40. https://doi.org/10.1099/00207713-16-3-313
  48. Stanbury PF, Whitaker A and Hall SJ (1997) Principles of fermentation technology, (2nd ed), pp. 93-122, Aditya Books (P) Ltd. New Delhi, India.
  49. Syed DG, Lee JC, Li WJ, Kim CJ and Agasar D (2009) Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresour Technol 100, 1868-71. https://doi.org/10.1016/j.biortech.2008.09.047
  50. Szabo I, Benedek A, Szabo IM and Barabas G (2000) Feather degradation with a thermotolerant Streptomyces graminofaciens strain. World J Microbiol Biotechnol 16, 253-5. https://doi.org/10.1023/A:1008950032017
  51. Tatineni R, Doddapanem KK, Potumarthi RC, Vellanki RN, Kandathil MT, Kolli N et al. (2008) Purification and characterization of an alkaline keratinase from Streptomyces sp. Bioresour Technol 99, 1596-1602. https://doi.org/10.1016/j.biortech.2007.04.019
  52. Thys RCS, Lucas FS, Riffel A, Heeb P and Brandelli A (2004) Characterization of a protease of a feather-degrading Microbacterium species. Lett Appl Microbiol 39, 181-6. https://doi.org/10.1111/j.1472-765X.2004.01558.x
  53. Yang JK, Shih IL, Tzeng YM and Wang SL (2000) Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microb Technol 26, 406-13. https://doi.org/10.1016/S0141-0229(99)00164-7
  54. Yang SS, Wang JY (1999) Protease and amylase production of Streptomyces rimosus in submerged and solid state cultivations. Bot Bull Acad Sin 40, 259-65.
  55. Yang S, Yan Q, Jiang Z, Li L, Tian H and Wang Y (2006) High-level of xylanase production by the thermophilic Paecilomyces themophila j18 on wheat straw in solid-state fermentation. Bioresour Technol 97, 1794-1800. https://doi.org/10.1016/j.biortech.2005.09.007