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Abstract

Patients with heart disease need long-term monitoring of the electrocardiogram (ECG) signal
using a portable electrocardiograph. This trend requires the miniaturization of data storage
and faster transmission to medical doctors for diagnosis. The ECG signal needs to be utilized
for efficient storage, processing and transmission, and its data must contain the important
components for diagnosis, such as the P wave, QRS-complex, and T wave. In this study, we
select the vertex which has a larger curvature value than the threshold value for compression.
Then, we reconstruct the compressed signal using by radial basis function interpolation.
This technique guarantees a lower percentage of root mean square difference with respect to
the extracted sample points and preserves all the important features of the ECG signal. Its
effectiveness has been demonstrated in the experiment using the Massachusetts Institute of
Technology and Boston’s Beth Israel Hospital arrhythmia database.

Keywords: Electrocardiogram, Data compression, Radial basis function, Interpolation,
Vertex, Signal reconstruction

Received: Feb. 7. 2013
Revised : Mar. 15. 2013
Accepted: Mar. 15. 2013

Correspondence to: Kil-Houn Park
(khpark@ee.knu.ac.kr)
c©The Korean Institute of Intelligent Systems

cc© This is an Open Access article dis-
tributed under the terms of the Creative
Commons Attribution Non-Commercial Li-
cense (http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted non-
commercial use, distribution, and reproduc-
tion in any medium, provided the original
work is properly cited.

1. Introduction

Electrocardiogram (ECG) is an invaluable tool for diagnosis of heart diseases and prognosis
observation, which records the electrical activity of the heart. A large amount of data needs to
be compressed for storage and transmission because generally an ECG signal has a sampling
frequency of over 200 Hz. A high performance processor with mass storage is necessary to
precisely digitize the ECG data, which leads to the difficulty in developing portable ECG
devices because of limited resources. In addition, the ECG data must be managed with
efficiency for long-term monitoring of the patient’s heart condition [1-3]. Therefore, data
compression needs to be employed for efficient storage, processing and transmission. Data
compression is the process of detecting and eliminating redundancies in a given data set and
must achieve maximum data reduction while preserving the significant morphological features
upon reconstruction. The reconstruction should be made within a predefined tolerance. Figure
1 shows the overall block diagram of the ECG signal model for compression and classification
of a disease syndrome.

The compression schemes of the ECG data that have been studied thus far are the direct
time-domain and transform domain techniques. Various research works have been presented
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Figure 1. Overall block diagram of the electrocardiogram signal
model.

for the exact delineation of ECG signals based on numerical dif-
ferentiation, pattern recognition, and mathematical models. The
direct techniques include the amplitude zone time epoch cod-
ing (AZTEC), fan, differential pulse code modulation (DPCM),
turning point (TP), and the coordinate reduction time encod-
ing system (CORTES) algorithms [4-6]. Because these tech-
niques detect and eliminate data redundancies, they have shown
more efficient performance. However, they generate a large
reconstruction error with a quite high signal distortion. The
transformation methods include the wavelet transform (WT),
discrete cosine transform (DCT), fourier transform (FT), walsh
transform, karhunen loeve transform (KLT), and so on [7-9].
Most of these transforms compact the signal’s energy into a few
transform coefficients, which implies that many of the transform
coefficients have little energy and can be discarded.

The compression techniques for the ECG signals should not
cause any loss of relevant medical information, and high com-
pression ratio (CR) is desired. The CR is defined as the ratio
between the original and compressed signals. The error is eval-
uated as the percentage of root mean square difference (PRD)
between the original and reconstructed signals. To improve
the ECG compression quality, the algorithms should reduce
the PRD without distorting any relevant diagnostic information.
In this paper, we show that the compression must retain all
specific points in the ECG signals and that the parameters of
the ECG mathematical model can be used to reconstruct the
ECG signal. A typical ECG signal has a P wave, QRS-complex,
and a T wave, as shown in Figure 2, all of which are important
components of the diagnosis. These feature points have a larger
signal variation rate than the other regions. Therefore, we first

Figure 2. Typical electrocardiogram signal. X, extraction of dominant
points.

select the vertices that have larger curvature values than the
threshold value, and add supplementary points with the zero
crossing points. Subsequently, we reconstruct the compressed
signal using radial basis function (RBF) interpolation. In gen-
eral, the RBF interpolation method is mainly used in geological
applications [10]. Geological application involves three dimen-
sional modeling. However the ECG signal is two dimensional;
therefore, the ECG signal modeling is simpler than the geo-
logical modeling. Moreover, the RBF efficiently represents
a system with a nonlinear property, such as the ECG signal.
The implemented method has been verified to have a very low
reconstruction error and to maintain important components for
diagnosis information.

This paper is presented as follows. The second section
presents the general theories of the RBF interpolation and the
algorithm that obtains the vertices based on the curvature. Then,
the third section provides the experimental results of the pro-
posed method. The conclusion is presented in the final section.

2. Compression with Reconstruction via RBF In-
terpolation

2.1 RBF Interpolation Overview

The RBF is an approximation model for multivariate interpola-
tion, which has been widely used in many engineering branches.
In this section, we introduce the basic theory of RBF interpola-
tion [11, 12]. We assume that a continuous function f : R→ R
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is known only at a set of discrete points X := {x1, · · · , xN}
in Ω ⊂ R.

The RBF interpolation of f on Xinvolves choosing the basis
function φ. Then, it defines the interpolant as follows:

Rf,X(x) =

N∑
n=1

anφ(x− xn) +

m∑
i=1

bipi(x), (1)

where p1, · · · , pm is the basis for Πm and represents the sub-
space consisting of all algebraic polynomials whose degree is
less than m. Coefficients an are chosen so that the following
condition is satisfied:

N∑
n=1

anpi(xn) = 0, i = 0, · · · ,m.

The coefficients of Rf,X must satisfy an (N +m)× (N +m)

system of linear equations, which can be written in a matrix
form as (

A P

PT O

)(
a

b

)
=

(
f

O

)
,

where A and P are the N × N and N ×m matrices having
elements Aij = φ(xi − xj) and Pij = pj(xi), respectively,
and O is a null matrix. Further, a ∈ Rn and b ∈ Rm are the
coefficients of Rf,X , and the components of f are the data
f(xj) with j = 1, · · · , N .

2.2 Vertex Selection Based on the Curvature

Curvature refers to the deviation rate of a curve or a curved
surface from a straight line or plane surface tangent to it [13].
The curvature value of the input ECG signal is calculated for
the vertex selection, which has a larger curvature value than
the threshold value. Initially, the original ECG signal is pre-
processed by band-pass filtering at 0.5–25 Hz to reduce the ECG
signal noise [14] because a typical ECG signal contains a 60
Hz power line noise, baseline wander, and muscle noise. Then,
a Gaussian LPF is used to eliminate the high frequency noise in
the preprocessed ECG signal. The curvature is calculated for
vertex selection with the smoothed ECG signal.

The curve function with a time variable is represented by

O(t) = (s(t), v(t)),

where s(t) is the sample index at t, and v(t) is the signal voltage.

The smoothed signal C(t, σ) is

C(t, σ) = (S(t, σ), V (t, σ)),

where S(t, σ) and V (t, σ) are expressed as

S(t, σ) = s(t)⊗ g(t, σ)

=
∫∞
−∞ s(τ) 1√

2πσ
exp

(
−(t−τ)2

2σ2

)
dτ,

V (t, σ) = v(t)⊗ g(t, σ)

=
∫∞
−∞ v(τ) 1√

2πσ
exp

(
−(t−τ)2

2σ2

)
dτ,

g(t, σ) =
1√
2πσ

exp

(
−t2

2σ2

)
.

g(t, σ) is a Gaussian function for smoothing with a standard
deviation σ. Curvature k(t, σ) based on the smoothed signal
C(t, σ) is calculated as

k(t, σ) =
S

′′
(t, σ)V

′
(t, σ)− S′

(t, σ)V
′′
(t, σ)

{S′(t, σ)2 + V ′(t, σ)2}3/2
, (2)

where S
′
(t, σ), S

′′
(t, σ), V

′
(t, σ) and V

′′
(t, σ) are expressed

as follows:

S
′
(t, σ) =

{
s(t)⊗ ∂

∂t
g(t, σ)

}

S
′′
(t, σ) =

{
s(t)⊗ ∂2

∂t2
g(t, σ)

}
V

′
(t, σ) =

{
v(t)⊗ ∂

∂t
g(t, σ)

}

V
′′
(t, σ) =

{
s(t)⊗ ∂2

∂t2
g(t, σ)

}
.

Finally, the vertices are selected by the curvature, whose value
is calculated by Eq. (2) to be more than the threshold value.
Figure 3 shows the restored ECG signal based on the selected
vertices, marked as small square boxes.

2.3 Reconstruction via RBF Interpolation with the Selected
Vertex

The compression process must retain all specific points in the
ECG signal, which are the important components for diagnosis.
These points include the local maximum and minimum points
of the ECG signal, such as the P, Q, R, S, and T waves [15].
The significant points selected from Section 2.2 will be used
as the parameters for signal reconstruction using the RBF inter-
polation. The selected vertex has a larger curvature value than

33 | Chunha Ryu, Tae-Hun Kim, Jungjoon Kim, Byung-Jae Choi, and Kil-Houm Park



http://dx.doi.org/10.5391/IJFIS.2013.13.1.31

Figure 3. Example of electrocardiogram (ECG) signal with vertices
based on curvature.

Figure 4. Block diagram of the compression and reconstruction
processes.

the threshold value. However, the restored ECG signal with the
selected vertices based on the curvature is not sufficiently com-
plete because of over-distortion with the original ECG signal.
Therefore, for pertinent RBF interpolation, zero crossing points
are selected as supplemental points on the sampled data of the
ECG signal and added to the initially selected vertices. The
block diagram of the global compression and reconstruction
processes is shown in Figure 4.

For a given sample data set xi = {x1, x2, · · · , xN}, the coef-
ficients ofRf,X are presented and used for signal reconstruction
from Eq. (1) as follows:(

a

b

)
=

(
A P

PT O

)−1(
f

O

)
, (3)

where A and P are expressed as

A =


φ(x1 − x1) φ(x1 − x2) · · · φ(x1 − xN )

φ(x2 − x1) φ(x2 − x2) · · · φ(x2 − xN )
...

...
. . .

...
φ(xN − x1) φ(xN − x2) · · · φ(xN − xN )

 ,

P =


p1(x1) p2(x1) · · · pm(x1)

p1(x2) p2(x2) · · · pm(x2)
...

...
. . .

...
p1(xN ) p2(xN ) · · · pm(xN )

 ,

φλ(x) = (x2 + λ2)β/2, λ > 0, β ∈ 2N − 1, (4)

pi(x) = xi−1, (i = 1, 2, · · · ,m).

In this study, we use the basis function called multiquadrics
among the many RBFs. One of the reasons for choosing this
particular function is our desire to use the parameter as a ten-
sion parameter. The value of λ, β as an arbitrary constant will
affect the smoothness of the reconstructed curve. pi(x) are all
algebraic polynomials whose degree is less than m.

3. Experimental Results and Discussions

In this study, an experiment to evaluate the proposed method is
conducted using the MIT-BIH arrhythmia database [16]. The
MIT-BIH arrhythmia database has a 360 Hz sampling frequency
acquired in 1800s. The personal computer used in this experi-
ment has a 2.40 GHz Core2 Quad CPU, and a 2 GByte memory.
The Matlab R2010a compiler is adopted. The ECG signal is
sampled within a 0.0028s period. We choose a signal period
that matches with the cardiac cycles. To identify the cardiac
cycles in the ECG signal, R wave detection is performed as a
preliminary step.

To evaluate the performance of the ECG signal, we use the
compression points ratio (CPR) instead of the CR and the PRD.
The CPR is defined as the ratio between the number of samples
in an average cycle period of the original signal and the com-
pressed signal sample points. The CPR and PRD are defined as
follows:

CPR =
NO(t)

NR(t)
,

PRD =

√∑tN
t=1(O(t)−R(t))2∑tN

t=1(O(t))2
× 100,

where NO(t) and NR(t) are the number of points in the original
ECG and compressed ECG signals, respectively, and O(t)and
R(t) are the original and reconstructed signals, respectively.
It has been established that the reconstructed signal with the
PRD values between 0% and 2% and 2% and 9% belongs to the
“very good” and “good” quality groups, respectively [17, 18].

Figure 5 shows the reconstructed signal with RBF interpola-
tion using the dataset with vertices based on the curvature (a)
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(a)

(b)
Figure 5. Reconstructed signals by radial basis function interpolation
via (a) vertices based on the curvature and (b) supplemental data with
zero crossing points based on Massachusetts Institute of Technology
and Bostons Beth Israel Hospital record 100.

and the supplemental dataset with the zero crossing points (b).
The reconstructed signal with vertices based on the curvature is
not sufficiently complete because it has an over-distortion with
the original signal. Therefore, it needs supplementary points
which are beneficial for RBF interpolation. We select the addi-
tional zero crossing points that can help in the reconstruction
by the RBF. We used multiquadrics as the basis function of
the RBF and used the third-order algebraic polynomials. More
issues have to be addressed in reconstructing the curve using
multiquadrics. The tension parameters such as λ and β in the
basis function of Eq. (3) can be tuned for smoothness. From
the experiment, we concluded that the reconstruction error that
belonged to the “very good” quality group was approximately
7 ≤ λ ≤ 20 for fixed β = 1. These parameters yielded very
good results.

Figure 6-(a) and (b) show the reconstructed signal via lin-
ear and RBF interpolations, respectively, using the MIT-BIH
arrhythmia database based on record 103 of the ML II signal.

(a)

(b)
Figure 6. Reconstructed ECG signal via (a) linear interpolation (PRD
= 16.3946) and (b) RBF interpolation (PRD = 1.8036) on MIT-BIH
record 103. CPR = 6.0588, λ = 13, and β = 1. CPR, compres-
sion points ratio; ECG, electrocardiogram; MIT-BIH, Massachusetts
Institute of Technology and Boston’s Beth Israel Hospital; PRD,
percentage of root mean square difference; RBF, radial basis function.

The blue line is the original ECG signal, and the red line is the
reconstructed signal.

We compared the evaluation by the linear function, and it
was clear that the implemented method provided a remarkable
performance and a low restoration error rate, as shown in Table
1. The best performance with PRD = 1.5400 via RBF inter-
polation is within the “very good” quality range at λ = 13 as
compared with that of the linear interpolation, when applied on
MIT-BIH arrhythmia record 100. Moreover, the restored ECG
signal included the specific components of the ECG signal, such
as the P wave, QRS complex, and T wave. We can observe that
the morphological information of the original signal was well
preserved.

4. Conclusion

The ECG signal needs to be utilized for efficient storage, pro-
cessing and transmission, and its data must retain their impor-
tant components for diagnosis information, such as the P wave,
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Table 1. Performance comparison of the RBF and linear interpola-
tions using the proposed algorithm

PRD MIT-BIH record
100 with

CPR=5.5891

MIT-BIH record
103 with

CPR=6.0588

RBF interpolation 1.5400 1.8036

Linear interpolation 18.5174 16.3946

CPR, compression points ratio; MIT-BIH, Massachusetts Institute of
Technology and Boston’s Beth Israel Hospital; PRD, percentage of
root mean square difference; RBF, radial basis function.

QRS-complex, and T wave. This study has demonstrated an
efficient method that reconstructed the transmitted ECG signal
with the minimum amount of compressed data. The ECG data
were compressed to selected sample points, which were the
vertices with large curvature, and zero crossing supplemented
vertices in the original signal. The signal was reconstructed by
RBF interpolation. The multiquadric function was used as the
basis function because it has a tension parameter that could in-
fluence the smoothness. The reliability of the proposed method
was clearly verified with a very low reconstruction error, in
addition to maintaining the diagnostic features. Improvement
in the compression rate via RBF interpolation with vertex, in-
cluding the diagnostic components, is left as a topic for future
research.
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