References
- Kelly JR, Nishimura I, Campbell SD. Ceramics in dentistry: historical roots and current perspectives. J Prosthet Dent 1996;75:18-32. https://doi.org/10.1016/S0022-3913(96)90413-8
- Fischer H, Weber M, Marx R. Lifetime prediction of all-ceramic bridges by computational methods. J Dent Res 2003; 82:238-242. https://doi.org/10.1177/154405910308200317
- Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 2007;98:389-404. https://doi.org/10.1016/S0022-3913(07)60124-3
- Tinschert J, Natt G, Mautsch W, Augthun M, Spiekermann H. Fracture resistance of lithium disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: a laboratory study. Int J Prosthodont 2001;14:231-238.
- Chen YM, Smales RJ, Yip KH, Sung WJ. Translucency and biaxial flexural strength of four ceramic core materials. Dent Mater 2008;24:1506-1511. https://doi.org/10.1016/j.dental.2008.03.010
- Akagawa Y, Hosokawa R, Sato Y, Kamayama K. Comparison between freestanding and tooth-connected partially stabilized zirconia implants after two years' function in monkeys: a clinical and histologic study. J Prosthet Dent 1998;80:551-558. https://doi.org/10.1016/S0022-3913(98)70031-9
- Ichikawa Y, Akagawa Y, Nikai H, Tsuru H. Tissue compatibility and stability of a new zirconia ceramic in vivo. J Prosthet Dent 1992;68:322-326. https://doi.org/10.1016/0022-3913(92)90338-B
- Scarano A, Di Carlo F, Quaranta M, Piattelli A. Bone response to zirconia ceramic implants: an experimental study in rabbits. J Oral Implantol 2003;29:8-12. https://doi.org/10.1563/1548-1336(2003)029<0008:BRTZCI>2.3.CO;2
- Rosenstiel SF, Land MF, Fujimoto J. Contemporary Fixed Prosthodontics. 4th ed. St. Louis; Mosby; 2006. p. 262, 643.
- Yu B, Ahn JS, Lee YK. Measurement of translucency of tooth enamel and dentin. Acta Odontol Scand 2009;67:57-64. https://doi.org/10.1080/00016350802577818
- Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part I: core materials. J Prosthet Dent 2002; 88:4-9.
- Heffernan MJ, Aquilino SA, Diaz-Arnold AM, Haselton DR, Stanford CM, Vargas MA. Relative translucency of six all-ceramic systems. Part II: core and veneer materials. J Prosthet Dent 2002;88:10-15.
- Vichi A, Louca C, Corciolani G, Ferrari M. Color related to ceramic and zirconia restorations: a review. Dent Mater 2011; 27:97-108. https://doi.org/10.1016/j.dental.2010.10.018
- Brodbelt RH, O'Brien WJ, Fan PL. Translucency of dental porcelains. J Dent Res 1980;59:70-75. https://doi.org/10.1177/00220345800590011101
- Peelen JGJ, Metselaar R. Light-scattering by pores in polycrystalline materials: transmission properties of alumina. J Appl Phys 1974;45:216-220. https://doi.org/10.1063/1.1662961
- Zhang HB, Kim BN, Morita K, Yoshida H, Lim JH, Hiraga K. Optimization of high-pressure sintering of transparent zirconia with nano-sized grains. J Alloy Compd 2010;508: 196-199. https://doi.org/10.1016/j.jallcom.2010.08.045
- Clarke FJ. Measurement of color of human teeth. In: McLean JW, editor. Proceedings of the First International Symposium on Ceramics. Chicago: Quintessence; 1983. p. 441-490.
- Casolco SR, Xu J, Garay JE. Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors. Scr Mater 2008;58:516-519. https://doi.org/10.1016/j.scriptamat.2007.11.014
- Jiang L, Liao Y, Wan Q, Li W. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J Mater Sci Mater Med 2011;22:2429-2435. https://doi.org/10.1007/s10856-011-4438-9
- Anselmi-Tamburini U, Woolman JN, Munir ZA. Transparent nanometric cubic and tetragonal zirconia obtained by highpressure pulsed electric current sintering, Adv Funct Mater 2007;17:3267-3273. https://doi.org/10.1002/adfm.200600959
- Yang D, Raj R, Conrad H. Enhanced sintering rate of Zirconia (3Y-TZP) through the effect of a weak dc electric field on grain growth. J Am Ceram Soc 2010;93:2935-2937. https://doi.org/10.1111/j.1551-2916.2010.03905.x
- Janney MA, Calhoun CL, Kimrey HD. Microwave sintering of solid oxide fuel cell materials: I, Zirconia-8 mol% Yttria. J Am Ceram Soc 1992;75:341-346. https://doi.org/10.1111/j.1151-2916.1992.tb08184.x
-
Li JF, Watanabe R. Phase Transformation in
$Y_{2}O_{3}$ -Partially- Stabilized$ZrO_{2}$ Polycrystals of Various Grain Sizes during Low-Temperature Aging in Water. J Am Ceram Soc 1998;81: 2687-2691. - Ebadzadeh T, Valefi M. Microwave-assisted sintering of zircon. J Alloy Compd 2008;448:246-249. https://doi.org/10.1016/j.jallcom.2007.02.032
- Cheng J, Agrawal D, Zhang Y, Roy R. Microwave sintering of transparent alumina. Mater Lett 2002;56:587-592. https://doi.org/10.1016/S0167-577X(02)00557-8
- Luo J, Adak S, Stevens R. Microstructure evolution and grain growth in the sintering of 3Y-TZP ceramics. J Mater Sci 1998;33:5301-5309. https://doi.org/10.1023/A:1004481813393
- ISO 18754 - Fine ceramics-advanced ceramics, advanced technical ceramics-Determination of density and apparent porosity. ISO; Geneva; Switzerland, 2008.
- ASTM. Standard test method for determining average grain size E112-96. Part 301 2003:243-266.
- Mendelson MI. Average Grain Size in Polycrystalline Ceramics. J Am Ceram Soc 1969;52:443-446. https://doi.org/10.1111/j.1151-2916.1969.tb11975.x
- Cook WD, McAree DC. Optical properties of esthetic restorative materials and natural dentition. J Biomed Mater Res 1985;19:469-488. https://doi.org/10.1002/jbm.820190502
- Lee YK. Influence of scattering/absorption characteristics on the color of resin composites. Dent Mater 2007;23:124-131 https://doi.org/10.1016/j.dental.2006.01.007
- O'Brien WJ, Johnston WM, Fanian F. Double-layer color effects in porcelain systems. J Dent Res 1985;64:940-943. https://doi.org/10.1177/00220345850640061801
- Hayashi K, Kobayashi O, Toyoda S, Morinag a K. Transmission optical properties of polycrystalline alumina with submicron grains. Mater Trans JIM 1991;32:1024-1029.
- O YT, Koo JB, Hong KJ, Park JS, Shin DC. Effect of grain size on transmittance and mechanical strength of sintered alumina. Mat Sci Eng A 2004;374:191-195. https://doi.org/10.1016/j.msea.2004.02.015
- Apetz R, van Bruggen MPB. Transparent alumina: A light scattering model. J Am Ceram Soc 2003;86:480-486. https://doi.org/10.1111/j.1151-2916.2003.tb03325.x
- Alaniz JE, Perez-Gutierrez FG, Aguilar G, Garay JE. Optical properties of transparent nanocrystalline yttria stabilized zirconia. Opt Mater 2009;32:62-68. https://doi.org/10.1016/j.optmat.2009.06.004
- ISO 13356 - Implants for surgery-Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). ISO; Geneva; Switzerland, 2008.
- Tekeli S, Erdogan M. A quantitative assessment of cavities in 3 mol% yttria-stabilized tetragonal zirconia specimens containing various grain size. Ceram Int 2002;28:785-789. https://doi.org/10.1016/S0272-8842(02)00044-5
- Hjerppe J, Vallittu PK, Fröberg K, Lassila LV. Effect of sintering time on biaxial strength of zirconium dioxide. Dent Mater 2009;25:166-171. https://doi.org/10.1016/j.dental.2008.05.011
Cited by
- Review of Translucency Determinations and Applications to Dental Materials vol.26, pp.4, 2014, https://doi.org/10.1111/jerd.12112
- Comparison of the translucency of shaded zirconia all-ceramic systems vol.6, pp.5, 2014, https://doi.org/10.4047/jap.2014.6.5.415
- Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials vol.6, pp.6, 2014, https://doi.org/10.4047/jap.2014.6.6.456
- Emerging Ceramic-based Materials for Dentistry vol.93, pp.12, 2014, https://doi.org/10.1177/0022034514553627
- Comparison of Contrast Ratio, Translucency Parameter, and Flexural Strength of Traditional and “Augmented Translucency” Zirconia for CEREC CAD/CAM System vol.28, pp.14964155, 2015, https://doi.org/10.1111/jerd.12172
- Controlling grain size in columnar YSZ coating formation by droplet filtering assisted PS-PVD processing vol.5, pp.124, 2015, https://doi.org/10.1039/C5RA20799A
- Fe3O4 stabilized zirconia: structural, mechanical and optical properties vol.74, pp.2, 2015, https://doi.org/10.1007/s10971-014-3415-4
- Densification of 8Y-Tetragonal-Stabilized Zirconia Optoceramics with Improved Optical Properties by Y Segregation vol.13, pp.5, 2016, https://doi.org/10.1111/ijac.12568
- Comparative radiopacity of conventional and full-contour Y-TZP ceramics vol.35, pp.2, 2016, https://doi.org/10.4012/dmj.2015-194
- Evaluation of translucency of monolithic zirconia and framework zirconia materials vol.8, pp.3, 2016, https://doi.org/10.4047/jap.2016.8.3.181
- Influence of Restorative Materials on Color of Implant-Supported Single Crowns in Esthetic Zone: A Spectrophotometric Evaluation vol.2017, pp.2314-6141, 2017, https://doi.org/10.1155/2017/5034358
- Comparison of the optical properties of pre-colored dental monolithic zirconia ceramics sintered in a conventional furnace versus a microwave oven vol.9, pp.5, 2017, https://doi.org/10.4047/jap.2017.9.5.394
- Test of Relative Translucency of 5 All-Ceramic Core Materials vol.591, pp.1662-9795, 2013, https://doi.org/10.4028/www.scientific.net/KEM.591.289
- The Translucency of Yttria-Stabilized Zirconia in Dental Crowns: A Review vol.761, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.761.436
- Effects of Laser Treatment on the Bond Strength of Differently Sintered Zirconia Ceramics vol.34, pp.7, 2016, https://doi.org/10.1089/pho.2015.4064
- The Effect of Sintering Time on the Marginal Fit of Zirconia Copings pp.1059941X, 2019, https://doi.org/10.1111/jopr.12731
- Honey mediated microwave assisted sol–gel synthesis of stabilized zirconia nanofibers vol.87, pp.3, 2018, https://doi.org/10.1007/s10971-018-4749-0
- Mica glass ceramics for dental restorations pp.1753-5557, 2018, https://doi.org/10.1080/10667857.2018.1494240
- Color Aspect of Monolithic Zirconia Restorations: A Review of the Literature pp.1059941X, 2018, https://doi.org/10.1111/jopr.12906
- Development of Translucent Zirconia for Dental Crown Applications vol.8, pp.3, 2013, https://doi.org/10.3923/ajsr.2015.342.350
- Translucent zirconia in the ceramic scenario for monolithic restorations: A flexural strength and translucency comparison test vol.60, pp.None, 2013, https://doi.org/10.1016/j.jdent.2017.03.002
- Speed sintering translucent zirconia for chairside one-visit dental restorations: Optical, mechanical, and wear characteristics vol.43, pp.14, 2013, https://doi.org/10.1016/j.ceramint.2017.05.141
- Mechanical and Surface Properties of Monolithic Zirconia vol.43, pp.3, 2013, https://doi.org/10.2341/17-019-l
- Structural and Morphological Evaluation of Presintered Zirconia following Different Surface Treatments vol.19, pp.2, 2013, https://doi.org/10.5005/jp-journals-10024-2230
- Three-dimensional printing of zirconia: characterization of early stage material properties vol.6, pp.1, 2013, https://doi.org/10.1080/26415275.2019.1640608
- Optical properties of translucent zirconia: A review of the literature vol.3, pp.1, 2019, https://doi.org/10.2478/ebtj-2019-0005
- The friction and wear properties of RGO/3Y-TZP composites under dry sliding vol.28, pp.None, 2019, https://doi.org/10.1177/2633366x19890626
- Monolithic Zirconia: An Update to Current Knowledge. Optical Properties, Wear, and Clinical Performance vol.7, pp.3, 2013, https://doi.org/10.3390/dj7030090
- Modeling of the Influence of Chemical Composition, Sintering Temperature, Density, and Thickness in the Light Transmittance of Four Zirconia Dental Prostheses vol.12, pp.16, 2013, https://doi.org/10.3390/ma12162529
- Influence of heating rate on the flexural strength of monolithic zirconia vol.11, pp.4, 2013, https://doi.org/10.4047/jap.2019.11.4.202
- The influence of altering sintering protocols on the optical and mechanical properties of zirconia: A review vol.31, pp.5, 2013, https://doi.org/10.1111/jerd.12492
- Effect of glazing on translucency, color, and surface roughness of monolithic zirconia materials vol.31, pp.5, 2013, https://doi.org/10.1111/jerd.12493
- Effect of sintering parameters on the mechanical properties of monolithic zirconia vol.13, pp.4, 2013, https://doi.org/10.15171/joddd.2019.038
- Effect of Sintering Conditions on Translucency of High Translucent Zirconia vol.829, pp.None, 2019, https://doi.org/10.4028/www.scientific.net/kem.829.49
- Factors affecting the translucency of monolithic zirconia ceramics: A review from materials science perspective vol.39, pp.1, 2013, https://doi.org/10.4012/dmj.2019-098
- Influence of CAD/CAM Fabrication and Sintering Procedures on the Fracture Load of Full-Contour Monolithic Zirconia Crowns as a Function of Material Thickness vol.45, pp.2, 2020, https://doi.org/10.2341/19-086-l
- Strength and translucency of zirconia after high‐speed sintering vol.32, pp.2, 2013, https://doi.org/10.1111/jerd.12524
- Modeling zirconia sintering trajectory for obtaining translucent submicronic ceramics for dental implant applications vol.188, pp.None, 2013, https://doi.org/10.1016/j.actamat.2020.01.061
- 지르코니아 세라믹 소결조건이 치과보철물의 적합도에 미치는 영향 vol.42, pp.2, 2013, https://doi.org/10.14347/kadt.2020.42.2.121
- 단시간과 장시간의 소결방법에 따른 지르코니아의 굴곡 강도와 미세구조의 변화 vol.42, pp.2, 2013, https://doi.org/10.14347/kadt.2020.42.2.73
- Color changes of monolithic zirconia block before and after sintering vol.44, pp.2, 2020, https://doi.org/10.21851/obr.44.02.202006.61
- Impact of multiple firings and resin cement type on shear bond strength between zirconia and resin cements vol.12, pp.4, 2013, https://doi.org/10.4047/jap.2020.12.4.197
- Do different sintering conditions influence bond strength between the resin cements and a currently used esthetic zirconia? vol.34, pp.16, 2013, https://doi.org/10.1080/01694243.2020.1783773
- Dimensional Changes of Yttria‐stabilized Zirconia under Different Preparation Designs and Sintering Protocols vol.29, pp.8, 2013, https://doi.org/10.1111/jopr.13170
- Diagnostic accuracy of 870-nm spectral-domain OCT with enhanced depth imaging for the detection of caries beneath ceramics vol.102, pp.None, 2013, https://doi.org/10.1016/j.jdent.2020.103458
- Effect of Yttria Content on the Translucency and Masking Ability of Yttria-Stabilized Tetragonal Zirconia Polycrystal vol.13, pp.21, 2013, https://doi.org/10.3390/ma13214726
- Effect of shade and sintering temperature on the translucency parameter of a novel multi‐layered monolithic zirconia in different thicknesses vol.32, pp.6, 2013, https://doi.org/10.1111/jerd.12598
- Fit of tooth‐supported zirconia single crowns—A systematic review of the literature vol.6, pp.6, 2013, https://doi.org/10.1002/cre2.323
- Strength and aging resistance of monolithic zirconia: an update to current knowledge vol.56, pp.1, 2013, https://doi.org/10.1016/j.jdsr.2019.09.002
- Mechanical behavior and microstructural characterization of different zirconia polycrystals in different thicknesses vol.13, pp.6, 2013, https://doi.org/10.4047/jap.2021.13.6.385
- Effect of Veneering and Hydrothermal Aging on the Translucency of Newly Introduced Extra Translucent and High Translucent Zirconia with Different Thicknesses vol.2021, pp.None, 2013, https://doi.org/10.1155/2021/7011021
- Minimal tooth preparation for posterior monolithic ceramic crowns: Effect on the mechanical behavior, reliability and translucency vol.37, pp.3, 2013, https://doi.org/10.1016/j.dental.2020.11.001
- Effects of sintering time on translucency and color of translucent zirconia ceramics vol.33, pp.4, 2021, https://doi.org/10.1111/jerd.12723
- Adhesion to Zirconia: A Systematic Review of Surface Pretreatments and Resin Cements vol.14, pp.11, 2013, https://doi.org/10.3390/ma14112751
- Effect of sintering and aging processes on the mechanical and optical properties of translucent zirconia vol.126, pp.1, 2013, https://doi.org/10.1016/j.prosdent.2021.03.024
- Impact of changes in sintering temperatures on characteristics of 4YSZ and 5YSZ vol.120, pp.None, 2013, https://doi.org/10.1016/j.jmbbm.2021.104586
- Effect of colourants on the optical characteristics and structure of Y 2 O 3 stabilised tetragonal zirconia ceramic vol.137, pp.5, 2013, https://doi.org/10.1111/cote.12546
- Optical properties evaluation of rapid sintered translucent zirconia with two dental colorimeters vol.17, pp.1, 2013, https://doi.org/10.1016/j.jds.2021.05.014