DOI QR코드

DOI QR Code

Fuzzy Adaptive Modified PSO-Algorithm Assisted to Design of Photonic Crystal Fiber Raman Amplifier

  • Akhlaghi, Majid (Young Researchers and Elite Club, Omidieh Branch, Islamic Azad University) ;
  • Emami, Farzin (Department of Opto Electronic, Shiraz University of Technology)
  • 투고 : 2013.01.24
  • 심사 : 2013.04.22
  • 발행 : 2013.06.25

초록

This paper presents an efficient evolutionary method to optimize the gain ripple of multi-pumps photonic crystal fiber Raman amplifier using the Fuzzy Adaptive Modified PSO (FAMPSO) algorithm. The original PSO has difficulties in premature convergence, performance and the diversity loss in optimization as well as appropriate tuning of its parameters. The feasibility and effectiveness of the proposed hybrid algorithm is demonstrated and results are compared with the PSO algorithm. It is shown that FAMPSO has a high quality solution, superior convergence characteristics and shorter computation time.

키워드

참고문헌

  1. D. Wang, N. Zou, Z. Kang, J. Liu, Y. Namihira, and Y. Zhang, "Design and analysis of gain-flattened raman amplifiers with novel highly nonlinear photonic crystal fibers," in Proc. 7th Int. Conf. on WiCOM (shanghai, China, 2011), pp. 1-4.
  2. T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). https://doi.org/10.1364/OL.22.000961
  3. Z. Yusoff, J. H. Lee, W. Belardi, T. M. Monro, P. C. Teh, and D. J. Richardson, "Raman effects in a highly nonlinear holey fiber: amplification and modulation," Opt. Lett. 27, 424-426 (2002). https://doi.org/10.1364/OL.27.000424
  4. K. Saitoh and M. Koshiba, "Highly nonlinear dispersionflattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express 12, 2027-2032 (2004). https://doi.org/10.1364/OPEX.12.002027
  5. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003). https://doi.org/10.1364/OE.11.000843
  6. R. K. Sinha and S. K. Varshney, "Dispersion properties of photonic crystal fibers," Microw. Opt. Technol. Lett. 37, 129-132 (2003). https://doi.org/10.1002/mop.10845
  7. M. Danaie and H. Kaatuzian, "Bandwidth improvement for a photonic crystal optical Y-splitter," J. Opt. Soc. Korea 15, 283-288 (2011). https://doi.org/10.3807/JOSK.2011.15.3.283
  8. H. Aghababaeian, M. H. Vadjed-Samiei, and N. Granpayeh, "Temperature stabilization of group index in silicon slotted photonic crystal waveguides," J. Opt. Soc. Korea 15, 398-402 (2011). https://doi.org/10.3807/JOSK.2011.15.4.398
  9. M. Bozorgi and N. Granpayeh, "Directional emission from photonic crystal waveguide output by terminating with CROW and employing the PSO algorithm," J. Opt. Soc. Korea 15, 187-195 (2011). https://doi.org/10.3807/JOSK.2011.15.2.187
  10. C. J. S. de Matos, K. P. Hansen, and J. R. Taylor, "Experimental characterization of Raman gain efficiency of holey fiber," Electron. Lett. 5, 424-425 (2003).
  11. C. L. Zhao, Z. Li, X. Yang, C. Lu, W. Jin, and M. S. Demokan, "Effect of a nonlinear photonic crystal fiber on the noise characterization of a distributed Raman amplifier," IEEE Photon. Technol. Lett. 3, 561-563 (2005).
  12. S. K. Varshney, K. Saitoh, T. Fujisawa, and M. Koshiba, "Design of gain-flattened highly nonlinear photonic crystal fiber Raman amplifier using a single pump: a leakage loss approach," in Proc. OFC Conference (Anaheim, California, USA, 2006), paper OWD4.
  13. J. Chang, T. Wang, and Z. Tao, "Optimal design of flattened gain spectrum of Raman amplifiers based on photonic crystal fibers," in Proc. Photonics and Optoelectronics, SOPO Symposium (Shanghai, China, 2009), pp. 1-4.
  14. M. Bottacini, F. Poli, A. Cucinotta, and S. Selleri, "Modeling of photonic crystal fiber Raman amplifiers," J. Lightwave Technol. 7, 1707-1713 (2004).
  15. F. Emami and M. Akhlaghi, "Gain ripple decrement of S-band Raman amplifier," IEEE Photon. Technol. Lett. 24, 1349-1352 (2012). https://doi.org/10.1109/LPT.2012.2203591
  16. S. Chaoli, Z. Jianchao, and P. Jeng, "A modified particle swarm optimization with feasibility-based rules for mixedvariable optimization problems," Int. J. Innovative Computing, Information and Control 7, 3081-3096 (2011).
  17. T. Niknam, H. Mojarrad, and M. Nayeripour, "A new fuzzy adaptive particle swarm optimization for non-convex economic dispatch," Int. J. Innovative Computing, Information and Control 7, 1764-1778 (2011).
  18. T. Niknam, H. D. Mojarrad, and H. Z. Meymand, "A novel hybrid particle swarm optimization for economic dispatch with valve-point loading effects," Applied Energy Conversion and Management 52, 1800-1809 (2011). https://doi.org/10.1016/j.enconman.2010.11.004
  19. P. Bajpai and S. N. Singh, "Fuzzy adaptive particle swarm optimization for biddinrg strategy in uniform price spot market," IEEE Trans. Power Sys. 22, 2152-2160 (2007). https://doi.org/10.1109/TPWRS.2007.907445
  20. Z. L. Dashtestani, F. Korushavi, and M. H. Rahmani, "An efficient shooting method for fiber amplifiers and lasers," J. Optics & Laser Technology 40, 1041-1046 (2008). https://doi.org/10.1016/j.optlastec.2008.02.006
  21. G. C. M. Ferreira, S. P. N. Cani, M. J. Pontes, and M. E. V. Segatto, "Optimization of distributed Raman amplifiers using a hybrid genetic algorithm with geometric compensation technique," IEEE J. Photonics 3, 390-399 (2011). https://doi.org/10.1109/JPHOT.2011.2140366
  22. H. M Jiang, K. Xie, and Y. F. Wang, "Shooting algorithm and particle swarm optimization based Raman fiber amplifiers," Opt. Commun. 283, 3348-3352 (2010). https://doi.org/10.1016/j.optcom.2010.04.024

피인용 문헌

  1. Binary PSO algorithm assisted to investigate the optical sensor based plasmonic nano-bi-domes vol.127, pp.19, 2016, https://doi.org/10.1016/j.ijleo.2016.05.098
  2. 4-channels coherent perfect absorption (CPA)-type demultiplexer using plasmonic nano spheres vol.27, pp.4, 2017, https://doi.org/10.1080/17455030.2017.1305135
  3. Binary control of plasmonic nano rods to design an optical switch vol.47, pp.8, 2015, https://doi.org/10.1007/s11082-015-0195-1
  4. Optical nonlinear enhancement from binary optimization of plasmonic nano-bi-domes vol.25, pp.02, 2016, https://doi.org/10.1142/S0218863516500181
  5. Binary TLBO algorithm assisted to investigate the supper scattering plasmonic nano tubes vol.89, 2016, https://doi.org/10.1016/j.spmi.2015.10.040
  6. Binary TLBO algorithm assisted for designing plasmonic nano bi-pyramids-based absorption coefficient vol.61, pp.13, 2014, https://doi.org/10.1080/09500340.2014.920537
  7. Simulation and Optimization of Nonperiodic Plasmonic Nano-Particles vol.18, pp.1, 2014, https://doi.org/10.3807/JOSK.2014.18.1.082
  8. Binary TLBO algorithm assisted to investigate the supper scattering plasmonic nano rod vol.123, pp.1, 2017, https://doi.org/10.1134/S0030400X17070128
  9. Power system distribution planning considering reliability and DG owner's profit vol.9, pp.6, 2017, https://doi.org/10.1063/1.5001977
  10. Investigating the optical XNOR gate using plasmonic nano-rods vol.19, 2016, https://doi.org/10.1016/j.photonics.2016.02.001
  11. Shape and size determination of plasmonic nano particles using particle swarm optimization algorithm based absorption coefficient vol.130, 2017, https://doi.org/10.1016/j.ijleo.2016.11.041
  12. Investigating the optical AND gate using plasmonic nano-spheres vol.15, pp.1, 2016, https://doi.org/10.1007/s10825-015-0747-4
  13. Spectral clustering for designing robust and reliable multi-MG smart distribution systems 2018, https://doi.org/10.1049/iet-gtd.2017.0671
  14. Utilization of binary PSO algorithm and DDA method to investigate the plasmonic demultiplexer -based CPA filter vol.156, 2018, https://doi.org/10.1016/j.ijleo.2017.12.060
  15. Binary teaching-learning-based optimization algorithm is used to investigate the superscattering plasmonic nanodisk vol.120, pp.6, 2016, https://doi.org/10.1134/S0030400X16060096
  16. Control of gold nano-domes to design an all-optical switch by simultaneously binary and continuous operated optimization vol.15, pp.2, 2016, https://doi.org/10.1007/s10825-016-0807-4
  17. Binary optimization of plasmonic nano bi-domes to design an optical clocking vol.47, pp.11, 2015, https://doi.org/10.1007/s11082-015-0232-0
  18. Investigating the optical NOR gate using plasmonic nanorods vol.29, pp.5, 2016, https://doi.org/10.1002/jnm.2142
  19. Combination of binary particle swarm optimization algorithm and discrete dipole approximation method to investigate the plasmonic circuit-based coherent perfect absorption filter vol.49, pp.3, 2017, https://doi.org/10.1007/s11082-017-0940-8