References
- J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003). https://doi.org/10.1038/nature01940
- P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). https://doi.org/10.1126/science.1079280
- J. C. Knight, T. Birks, P. Russell, and D. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). https://doi.org/10.1364/OL.21.001547
- J. C. Knight, J. Broeng, T. Birks, and P. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998). https://doi.org/10.1126/science.282.5393.1476
- W. J. Lee, D. C. Kim, S. G. Park, E. H. Lee, and S. G. Lee, "Measurement of the internal structure of an optical waveguide embedded in a flexible optical circuit board by enhancing the signal contrast of a confocal microscope," J. Opt. Soc. Korea 15, 9-14 (2011). https://doi.org/10.3807/JOSK.2011.15.1.009
- M. Bozorgi and N. Granpayeh, "Directional emission from photonic crystal waveguide output by terminating with CROW and employing the PSO algorithm," J. Opt. Soc. Korea 15, 187-195 (2011). https://doi.org/10.3807/JOSK.2011.15.2.187
- B. Eggleton, C. Kerbage, P. Westbrook, R. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001). https://doi.org/10.1364/OE.9.000698
- R. He, P. Sazio, A. Peacock, N. Healy, J. Sparks, M. Krishnamurthi, V. Gopalan, and J. Badding, "Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres," Nat. Photonics 6, 174-179 (2012). https://doi.org/10.1038/nphoton.2011.352
- M. Danaie and H. Kaatuzian, "Bandwidth Improvement for a photonic crystal optical Y-splitter," J. Opt. Soc. Korea 15, 283-288 (2011). https://doi.org/10.3807/JOSK.2011.15.3.283
- C. S. Park, K. I. Joo, S. W. Kang, and H. R. Kim, "A PDMS-coated optical fiber Bragg grating sensor for enhancing temperature sensitivity," J. Opt. Soc. Korea 15, 329-334 (2011). https://doi.org/10.3807/JOSK.2011.15.4.329
- T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003). https://doi.org/10.1364/OE.11.002589
- Y. Yu, X. Li, X. Hong, Y. Deng, K. Song, Y. Geng, H. Wei, and W. Tong, "Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling," Opt. Express 18, 15383-15388 (2010). https://doi.org/10.1364/OE.18.015383
- Y. Wang, W. Jin, L. Jin, X. Tan, H. Bartelt, W. Ecke, K. Moerl, K. Schroeder, R. Spittel, and R. Willsch, "Optical switch based on a fluid-filled photonic crystal fiber Bragg grating," Opt. Lett. 34, 3683-3685 (2009). https://doi.org/10.1364/OL.34.003683
- Y. Wang, X. Tan, W. Jin, D. Ying, Y. Hoo, and S. Liu, "Temperature-controlled transformation in fiber types of fluid-filled photonic crystal fibers and applications," Opt. Lett. 35, 88-90 (2010). https://doi.org/10.1364/OL.35.000088
- Y. Wang, H. Bartelt, W. Ecke, K. Moerl, H. Lehmann, K. Schroeder, R. Willsch, J. Kobelke, M. Rothhardt, and R. Spittel, "Thermo-optic switching effect based on fluid-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 22, 164-166 (2010). https://doi.org/10.1109/LPT.2009.2037242
- A. Samoc, "Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared," J. Appl. Phys. 94, 6167-6174 (2003). https://doi.org/10.1063/1.1615294
- W. Heller, "Remarks on refractive index mixture rules," J. Phys. Chem. 69, 1123-1129 (1964).
Cited by
- Efficient Logical Topology Design Considering Multiperiod Traffic in IP-over-WDM Networks vol.19, pp.1, 2015, https://doi.org/10.3807/JOSK.2015.19.1.013
- Simulation of surface plasmon resonance temperature sensor based on liquid mixture-filling microstructured optical fiber vol.53, pp.6, 2014, https://doi.org/10.1117/1.OE.53.6.067103