Abstract
Yang [12] investigated weakening-free fuzzy logics expanded by the delta connective $\Delta$, which can be interpreted as Baaz's projection and its generalizations. In this paper, we keep investigating such logics with an alternative delta connective $\Delta$, which can be regarded as a variant of the Baaz projection. The main difference is that although our new $\Delta$ satisfies many properties of Baaz projection, it can nether be interpreted as Baaz's projection itself nor its generalizations. For this, we first introduce several weakening-free fuzzy logics with the alternative connective $\Delta$. The algebraic structures corresponding to the systems are then defined, and their algebraic completeness is proved.
양은석은 [12]에서 Baaz 사영과 그것의 일반화로 간주될 수 있는 델타 연결사 $\Delta$에 의해 확대된 약화로부터 자유로운 퍼지 논리들을 연구하였다. 이 논문에서 우리는 Baaz 사영의 많은 성질들을 만족하지만 Baaz 사영으로도 그것의 일반화로도 간주될 수 없다는 의미에서 Baaz 사영의 변형에 해당하는 델타 연결사 $\Delta$에 의해 확대된 약화로부터 자유로운 퍼지 논리들을 연구한다. 이를 위하여 먼저 연결사 $\Delta$를 갖는 몇몇 약화로부터 자유로운 퍼지 논리를 소개한다. 다음으로 그에 상응하는 대수적 구조들을 정의한 후, 관련된 대수적 완전성을 증명한다.