DOI QR코드

DOI QR Code

Histochemical Analysis of the Cone cells in the Retina of the Greater Horseshoe Bat Rhinolophus ferrumequinum

한국관박쥐 망막 원뿔세포의 조직화학적 분석

  • Jeon, Young-Ki (Dept. of Ophthalmic Optics, Taegu Science University) ;
  • Joo, Young-Rak (Dept. of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Ye, Eun-Ah (Dept. of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Moon-Sook (Dept. of Biology, College of Natural Sciences, Kyungpook National University) ;
  • Jeon, Chang-Jin (Dept. of Biology, College of Natural Sciences, Kyungpook National University)
  • 전영기 (대구과학대학교 안경광학과) ;
  • 주영락 (경북대학교 자연과학대학 생물학과) ;
  • 예은아 (경북대학교 자연과학대학 생물학과) ;
  • 김문숙 (경북대학교 자연과학대학 생물학과) ;
  • 전창진 (경북대학교 자연과학대학 생물학과)
  • Received : 2013.04.29
  • Accepted : 2013.06.15
  • Published : 2013.06.30

Abstract

Purpose: This study was done to understand the visual system of bat by analyzing the distribution of middle/long (ML) opsin cone photoreceptors in the retina of the greater horseshoe bat. Methods: Experiments have been performed by standard immunocytochemical techniques on retina of the greater horseshoe bat Rhinolophus ferrumequinum. Results: The estimated numbers of ML cones were $27,336{\pm}2,130$ cells and the mean density of them was $7,854{\pm}268cells/mm^2$ among the four retinas. S opsin was appeared a little immunoreactivity in the outer segments of outer nuclear layer of cones. Conclusions: From the well organized spatial distributions of ML opsin and the immunoreactivity of S opsin in the retinas, the greater horseshoe bats have the functions not only reacting in the photopic vision but being able to distinguish the colors.

목적: 한국관박쥐의 망막에서 원뿔세포의 middle/long(ML) opsin cone photoreceptors의 분포를 분석하여 박쥐의 시각계를 이해하고자 하였다. 방법: 표준면역세포화학법을 이용하여 성체 한국관박쥐의 망막을 대상으로 조사하였다. 결과: 4 개체의 망막 전체에서 추정된 ML opsin은 $27,336{\pm}2,130$개였으며, 평균밀도는 $7,854{\pm}268cells/mm^2$이었다. S opsin은 외핵층에 위치한 세포외절에서 일부 면역반응성을 보였다. 결론: ML opsin의 조직화된 분포와 S opsin의 발현 결과는 한국관박쥐가 밝은 빛에도 반응하며 색을 구별할 수 있는 기능을 가지고 있다는 것을 알 수 있다.

Keywords

References

  1. Mller B, Glosmann M, Peichl L, Knop GC, Hagemann C, Ammermller J. Bat eyes have ultraviolet-sensitive cone photoreceptors. PLoS One. 2009;4(7):1-7. https://doi.org/10.1371/journal.pone.0005361
  2. Winter Y, Lopez J, von Helversen O. Ultraviolet vision in a bat. NATURE. 2003;425:612-614. https://doi.org/10.1038/nature01971
  3. Jones G, Rayner JNV. Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae). Behav Ecol Sociobiol. 1989;25:183-191. https://doi.org/10.1007/BF00302917
  4. Ransome RD. The distribution of the Greater horse-shoe bat, Rhinolophus ferrumequinum, during hibernation, in relation to environmental factors. J Zool. 1968;154(1):77-112.
  5. Ransome RD, Hutson AM. Action plan for the conservation of the greater horseshoe bat in Europe (Rhinolophus ferrumequinum). Nature and Environment. 2000;109:7-52.
  6. Kim TJ, Jeon YK, Lee JY, Lee ES, Jeon CJ. The photoreceptor populations in the retina of the greater horseshoe bat Rhinolophus ferrumequinum. Mol Cells. 2008;26(4):373-379.
  7. Jeon YK, Kim TJ, Lee JY, Choi JS, Jeon CJ. AII amacrine cells in the inner nuclear layer of bat retina: identification by parvalbumin immunoreactivity. Neuroreport. 2007;18(11):1095-1099. https://doi.org/10.1097/WNR.0b013e3281e72afe
  8. Jeon YK, Kim TJ, Lee ES, Joo YR, Jeon CJ. Distribution of parvalbumin-immunoreactive retinal ganglion cells in the greater horseshoe bat, Rhinolophus ferrumequinum. Journal of Life Science. 2007;17(8):1068-1074. https://doi.org/10.5352/JLS.2007.17.8.1068
  9. Hirsch J, Miller WH. Does cone positional disorder limit resolution?. JOSA A. 1987;4(8):1481-1492. https://doi.org/10.1364/JOSAA.4.001481
  10. Jacobs GH, Bowmaker JK, Mollon JD. Behavioural and microspectro-photometric measurements of colour vision in monkeys. Nature. 1981;292(5283):541-543. https://doi.org/10.1038/292541a0
  11. Thibos LN, Walsh DJ, Cheney FE. Vision beyond the resolution limit: aliasing in the periphery. Vision Res. 1987;27(1):2193-2197. https://doi.org/10.1016/0042-6989(87)90134-9
  12. Thibos LN, Cheney FE, Walsh DJ. Retinal limits to the detection and resolution of gratings. J Opt Soc Am A. 1987;4(8):1524-1529. https://doi.org/10.1364/JOSAA.4.001524
  13. Thibos LN, Walsh DJ, Cheney FE. Vision beyond the resolution limit: aliasing in the periphery. Vision Res. 1987; 27(12):2193-2197. https://doi.org/10.1016/0042-6989(87)90134-9
  14. Williams DR, Coletta NJ. Cone spacing and the visual resolution limit. J Opt Soc Am A. 1987;4(8):1514-1523.
  15. Wikler KC, Rakic P. Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. J Neurosci. 1990;10(10):3390-3401.
  16. Jeon MH, Jeon CJ. Immunocytochemical localization of calretinin containing neurons in retina from rabbit, cat, and dog. Neurosci Res. 1998;32(1):75-84. https://doi.org/10.1016/S0168-0102(98)00070-4
  17. Hofer H, Carroll J, Neitz J, Neitz M, Williams DR. Organization of the human trichromatic cone mosaic. J Neurosci. 2005;25(4):9669-9679. https://doi.org/10.1523/JNEUROSCI.2414-05.2005
  18. Wikler KC, Rakic P, Bhattacharyya B, Macleish PR. Early emergence of photoreceptor mosaicism in the primate retina revealed by a novel cone-specific monoclonal antibody. J. Comp Neurol. 1997;377(4):500-508. https://doi.org/10.1002/(SICI)1096-9861(19970127)377:4<500::AID-CNE2>3.0.CO;2-6
  19. Wikler KC, Szel A, Jacobsen AL. Positional information and opsin identity in retinal cones. J. Comp Neurol. 1996;374(1):96-107. https://doi.org/10.1002/(SICI)1096-9861(19961007)374:1<96::AID-CNE7>3.0.CO;2-I
  20. Wang D, Oakley T, Mower J, Shimmin LC, Yim S, Honeycutt RL, et al. Molecular evolution of bat color vision genes. Mol Biol Evol. 2004;21(2):295-302.
  21. Chun MH, Han SH, Chung JW, Wassle H. Electron microscopic analysis of the rod pathway of the rat retina. J. Comp. Neurol. 1993;332(4):421-432. https://doi.org/10.1002/cne.903320404
  22. Dacheux RF, Raviola E. The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J. Neurosci. 1986;6(2):331-345.
  23. Famiglietti EV, Kolb H. A bistratified amacrine cell and synaptic cirucitry in the inner plexiform layer of the retina. Brain Res. 1975;84(2):293-300. https://doi.org/10.1016/0006-8993(75)90983-X

Cited by

  1. Distribution of Glutamate Receptors in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) vol.19, pp.3, 2014, https://doi.org/10.14479/jkoos.2014.19.3.413
  2. Localization of the Major Retinal Neurotransmitters and Receptors and Müller Glia in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) vol.20, pp.3, 2015, https://doi.org/10.14479/jkoos.2015.20.3.391