DOI QR코드

DOI QR Code

Device and Circuit Level Performance Comparison of Tunnel FET Architectures and Impact of Heterogeneous Gate Dielectric

  • Narang, Rakhi (Semiconductor Device Research Laboratory, Department of Electronic Science, University of Delhi) ;
  • Saxena, Manoj (Department of Electronics, Deen Dayal Upadhyaya, College, University of Delhi) ;
  • Gupta, R.S. (Department of Electronics and Communication Engineering, Maharaja Agrasen Institute of Technology) ;
  • Gupta, Mridula (Semiconductor Device Research Laboratory, Department of Electronic Science, University of Delhi)
  • Received : 2012.09.29
  • Accepted : 2012.11.07
  • Published : 2013.06.30

Abstract

This work presents a comparative study of four Double Gate tunnel FET (DG-TFET) architectures: conventional p-i-n DG-TFET, p-n-p-n DG-TFET, a gate dielectric engineered Heterogate (HG) p-i-n DG-TFET and a new device architecture with the merits of both Hetero Gate and p-n-p-n, i.e. HG p-n-p-n DG-TFET. It has been shown that, the problem of high gate capacitance along with low ON current for a p-i-n TFET, which severely hampers the circuit performance of TFET can be overcome by using a p-n-p-n TFET with a dielectric engineered Hetero-gate architecture (i.e. HG p-n-p-n). P-n-p-n architecture improves the ON current and the heterogeneous dielectric helps in reducing the gate capacitance and suppressing the ambipolar behavior. Moreover, the HG architecture does not degrade the output characteristics, unlike the gate drain underlap architecture, and effectively reduces the gate capacitance.

Keywords

References

  1. Th. Nirschl, P.-F.Wang, C. Weber, J. Sedlmeir, R. Heinrich, R. Kakoschke, K. Schrufer, J. Holz, C. Pacha, T. Schulz, M. Ostermayr, A. Olbrich, G. Georgakos, E. Ruderer, W. Hansch, and D. Schmitt-Landsiedel, "The tunneling field effect transistor (TFET) as an add-on for ultra-lowvoltage analog and digital processes", in IEDM Tech. Dig., 2004, pp. 195 - 198.
  2. E. H. Toh, G. H. Wang, L. Chan, G. Y. Samudra, and C. Yeo, "Device physics and guiding principles for the design of double-gate tunneling field effect transistor with silicon-germanium source heterojunction", Appl. Phys. Lett., vol. 91 no. 24, pp. 243505, 2007. https://doi.org/10.1063/1.2823606
  3. W. Y. Choi, B. G. Park, J. D. Lee, and T. J. K. Liu, "Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec", IEEE Electron Device Lett., vol. 28, no. 8, pp. 743- 45, Aug. 2007. https://doi.org/10.1109/LED.2007.901273
  4. F. Mayer, C. L. Royer, J. F. Damlencourt, K. Romanjek, F. Andrieun, C. Tabone, B. Previtali and S. Deleonibus, "Impact of SOI, $Si_{1−x}Ge_{x}OI$ and GeOI substrates on CMOS compatible tunnel FET performance", in IEDM Tech. Dig., 2008, pp. 1-5.
  5. O. M. Nayfeh, C. N. Chleirigh, J. Hennessy, L. Gomez, J. L. Hoyt, and D. A. Antoniadis, "Design of tunneling field-effect transistors using strainedsilicon/ strained germanium type II staggered heterojunctions", IEEE Electron Device, Lett., vol. 29, no. 9, pp. 1074-77, Sept. 2008. https://doi.org/10.1109/LED.2008.2000970
  6. N. Patel, A. Ramesha, and S. Mahapatra, "Drive current boosting of n-type tunnel FET with strained SiGe layer at source", Microelectronics Journal, vol. 39, no. 3, pp. 1671-1677, 2008. https://doi.org/10.1016/j.mejo.2008.02.020
  7. T. Krishnamohan, D. Kim, S. Raghunathan, and K. Saraswat, "Double-Gate Strained-Ge Heterostructure Tunneling FET (TFET) With record high drive currents and <60mV/dec subthreshold slope", in IEDM Tech. Dig., 2008, pp.1 -3.
  8. S. Mookerjea and S. Datta, "Comparative Study of Si, Ge and InAs Based Steep Subthreshold Slope Tunnel Transistors for 0.25V Supply Voltage Logic Applications", 66th Device Research Conference (DRC), Jun. 2008, pp. 47-48.
  9. V. Nagavarapu, R. Jhaveri, and J. C. S. Woo, "The Tunnel Source (PNPN) n MOSFET: A Novel High Performance Transistor," IEEE Trans. Electron Devices, vol. 55, no. 4, pp. 1013-1019, Apr. 2008. https://doi.org/10.1109/TED.2008.916711
  10. J-S. Jang and W. Y. Choi, "Ambipolarity Characterization of Tunneling Field-Effect Transistors", in Silicon Nanoelectronics Workshop (SNW), 2010 June 2010, pp. 1 - 2.
  11. W. Y. Choi and W. Lee, "Hetero-Gate-Dielectric Tunneling Field-Effect Transistors", IEEE Trans. Electron Devices, Vol. 57 no. 9, pp. 2317-2319, Sept 2010. https://doi.org/10.1109/TED.2010.2052167
  12. K. Boucart, and A. M. Ionescu, "Double-Gate Tunnel FET With High-$\kappa$ Gate Dielectric", IEEE Trans. Electron Devices, Vol. 54, no.7, pp. 1725 - 1733, July 2007. https://doi.org/10.1109/TED.2007.899389
  13. A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken, "Tunnel field-effect transistor without gate-drain overlap", Appl. Phys. Lett., Vol. 91, pp. 053102, 2007. https://doi.org/10.1063/1.2757593
  14. J. Zhuge, A. S. Verhulst, W. G. Vandenberghe, W. Dehaene, R. Huang, Y. Wang and G. Groeseneken, "Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications", Semicond. Sci. Technol., vol. 26, pp. 085001-085008
  15. S. Cho, M-C. Sun, G. Kim, T. I. Kamins, B.-G. Park, and J. S. Harris, Jr., "Design Optimization of a Type-I Heterojunction Tunneling Field-Effect Transistor (I-HTFET) for High Performance Logic Technology," J. Semiconductor Technology and Science, vol. 11, no. 3, pp. 182-189, Sep. 2011. https://doi.org/10.5573/JSTS.2011.11.3.182
  16. S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, "Effective Capacitance and Drive Current for Tunnel FET (TFET) CV/I Estimation", IEEE Trans. Electron Devices, vol. 56, no. 9, pp. 2092-98, Sept. 2009. https://doi.org/10.1109/TED.2009.2026516
  17. A. Mallik and A. Chattopadhyay, "Drain- Dependence of Tunnel Field-Effect Transistor Characteristics: The Role of the Channel", IEEE Trans. Electron Devices, vol. 58, no. 12, pp. 4250 - 4257, Dec. 2011. https://doi.org/10.1109/TED.2011.2169416
  18. A. Florakis, N. Misra, C. Grigoropoulos, K. Giannakopoulos, A. Halimaoui, and D. Tsoukalas, "Non-melt laser annealing of plasma implanted boron for ultra shallow junctions in silicon," Mater. Sci. Eng.B, vol. 154/155, pp. 39-42, Dec 2008. https://doi.org/10.1016/j.mseb.2008.09.035
  19. J. T. Smith, C. Sandow, S. Das, R.A. Minamisawa, S. Mantl, and J. ppenzeller, "Silicon Nanowire Tunneling Field-Effect Transistor Arrays: Improving Subthreshold Performance Using Excimer Laser Annealing", IEEE Transactions on Electron Devices, Vol. 58, no. 7 pp. 1822 - 1829, July 2011. https://doi.org/10.1109/TED.2011.2135355
  20. G. Han, Y. S. Yee, P. Guo, Y. Yang, L. Fan, C. Zhan, and Y-C Yeo, "Enhancement of TFET performance using dopant profile-steepening implant and source dopant concentration engineering at tunneling junction", in Silicon Nanoelectronics Workshop (SNW), pp. 1 - 2. June 2010.
  21. ATLAS User's guide, SILVACO International, Version 5.14.0.R, 2010.
  22. R. Narang, M. Saxena, R. S. Gupta, and M. Gupta, "Dielectric Modulated Tunnel Field Effect Transistor-A Biomolecule Sensor", IEEE Electron Device Lett., vol. 33, no. 2, pp. 266-268, Feb 2012. https://doi.org/10.1109/LED.2011.2174024
  23. K. E. Moselund, H. Ghoneim, M. T. Bjork, H. Schmid, S. Karg, E. Lortscher, W. Riess, and H. Riel, "Comparison of VLS grown Si NW tunnel FETs with different gate stacks", in ESSDERC, Sept. 2009, pp. 448 - 451.
  24. R. Granzner, V. M. Polyakov, F. Schwierz, M. Kittler, and T. Doll, "On the suitability of DD and HD models for the simulation of nanometer double-gate MOSFETs", Physica E, vol. 19 (1-2), pp. 33-38, 2003. https://doi.org/10.1016/S1386-9477(03)00290-X
  25. N. Arora, "MOSFET Models for VLSI circuit simulation Theory and Practice", Springer-Verlag Wien New York. Springer-Verlag New York, Inc. Secaucus, NJ, USA 1993.
  26. Y. Yang, X. Tong, L. T. Yang, P. F. Guo, L. Fan and Y. C. Yeo, "Tunneling field-effect transistor: capacitance components and modeling", IEEE Electron Device Lett., Vol. 31, no. 7, pp.752-4, July 2010 https://doi.org/10.1109/LED.2010.2047240
  27. A. Pal, A. B. Sachid, H. Gossner, and V. R. Rao, "Insights into device design Insights Into the Design and Optimization of Tunnel-FET Devices and Circuits", IEEE Trans. Electron Devices, Vol. 58, no. 4, pp. 1045 - 1053, Apr. 2011. https://doi.org/10.1109/TED.2011.2109002
  28. I. M. Kang, J.-S. Jang, and W. Y. Choi, "Radio Frequency Performance of Hetero-Gate-Dielectric Tunneling Field-Effect Transistors", Jpn. J. Appl. Phys., vol. 50, pp. 124301, Nov. 2011. https://doi.org/10.1143/JJAP.50.124301
  29. S. Cho, J. S. Lee, K. R. Kim, B.-G. Park, J. S. Harris, and I.M. Kang, "Analyses on Small-Signal Parameters and Radio-Frequency Modeling of Gate-All-Around Tunneling Field-Effect Transistors", IEEE Trans. Electron Devices, vol. 58, no. 12, pp. 4164 - 4171, Dec. 2011 https://doi.org/10.1109/TED.2011.2167335
  30. R. J. Baker, H. W. Li, D. E. Boyce, "CMOS Circuit Design, Layout and Simulation, IEEE Press, PHI, 2000
  31. https://nanohub.org/tools/pete (Purdue Emerging Technology Evaluator)
  32. C. Augustine, A. Raychowdhury, Y. Gao, M. Lundstrom, and K. Roy, "PETE: A device/circuit analysis framework for evaluation and comparison of charge based emerging devices", in International Symposium on Quality of Electronic Design (ISQED), 2009 pp. 80 - 85.
  33. J. Singh, K. Ramakrishnan, S. Mookerjea, S. Datta, N. Vijaykrishnan, and D. Pradhan, "A novel Si-Tunnel FET based SRAM design for ultra lowpower 0.3V VDD applications", Asia and South Pacific Design Automation Conference (ASP-DAC), 2010, pp. 181 - 186.
  34. Y. Hong, Y. Yang, L. Yang, G. Samudra, C.-H Heng, and Y-C. Yeo; "SPICE Behavioral Model of the Tunneling Field-Effect Transistor for Circuit Simulation", IEEE Trans. Circuits and Systems II Express Briefs, Vol. 56, no. 12, pp. 946-950, Dec. 2009. https://doi.org/10.1109/TCSII.2009.2035274
  35. Y. Gao, S. O. Koswatta, D. E. Nikonov, and M. S. Lundstrom, "p-i-n Tunnel FETs vs. n-i-n MOSFETs: Performance Comparison from Devices to Circuits", in arXiv:1001.5247v1.
  36. Y. Khatami and K. Banerjee, "Steep Subthreshold Slope n- and p-Type Tunnel-FET Devices for Low- Power and Energy-Efficient Digital Circuits", IEEE Trans. Electron Devices, vol. 56 no. 11, pp. 2752- 61, Nov. 2009. https://doi.org/10.1109/TED.2009.2030831

Cited by

  1. Impact of Temperature Variations on the Device and Circuit Performance of Tunnel FET: A Simulation Study vol.12, pp.6, 2013, https://doi.org/10.1109/TNANO.2013.2276401
  2. Trap-assisted tunneling on extended defects in tunnel field-effect transistors vol.53, pp.4S, 2014, https://doi.org/10.7567/JJAP.53.04EC03
  3. Effect of spacer dielectrics on performance characteristics of Ge-based tunneling field-effect transistors vol.53, pp.6S, 2014, https://doi.org/10.7567/JJAP.53.06JE05
  4. Modeling and TCAD Assessment for Gate Material and Gate Dielectric Engineered TFET Architectures: Circuit-Level Investigation for Digital Applications vol.62, pp.10, 2015, https://doi.org/10.1109/TED.2015.2462743
  5. An Accurate Analytical Current Model of Double-gate Heterojunction Tunneling FET vol.64, pp.3, 2017, https://doi.org/10.1109/TED.2017.2654248
  6. Investigation of light doping and hetero gate dielectric carbon nanotube tunneling field-effect transistor for improved device and circuit-level performance vol.31, pp.3, 2016, https://doi.org/10.1088/0268-1242/31/3/035002