DOI QR코드

DOI QR Code

Diameter Control of Carbon Nanotubes Using Surface Modified Fe Nano-Particle Catalysts with APS

APS로 표면 처리한 Fe 나노 입자 촉매를 이용한 CNT의 직경제어

  • Lee, Sunwoo (Department of Electrical Information, Inha Technical College)
  • 이선우 (인하공업전문대학 전기정보과)
  • Received : 2013.05.15
  • Accepted : 2013.05.24
  • Published : 2013.06.01

Abstract

Diameter controlled carbon nanotubes (CNTs) were grown using surface modified iron nano-particle catalysts with aminpropyltriethoxysilane (APS). Iron nano-particles were synthesized by thermal decomposition of iron pentacarbonyl-oleic acid complex. Subsequently, APS modification was done using the iron nano-particles synthesized. Agglomeration of the iron nano-particles during the CNT growth process was effectively prevented by the surface modification of nano-particles with the APS. APS plays as a linker material between Fe nano-particles and $SiO_2$ substrate resulting in blocking the migration of nano-particles. APS also formed siliceous material covering the iron nano-particles that prevented the agglomeration of iron nano-particles at the early stages of the CNT growth. Therefore we could obtain the diameter controlled CNTs by blocking agglomeration of the iron nano-particles.

Keywords

References

  1. S. Iijima, Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  2. S. J. Tans, A.R.M. Verschueren, and C. Dekker, Nature, 393, 49 (1998). https://doi.org/10.1038/29954
  3. J. Li, Q. Ye, A. Cassell, H. T. Ng, R. Stevens, J. Han, and M. Meyyappan, Appl. Phys. Lett., 82, 2491 (2003). https://doi.org/10.1063/1.1566791
  4. T. W. Ebbesen, Carbon Nanotubes, (CRC Press, Boca Raton, 1997).
  5. J. J. Davis, K. S. Coleman, B. R. Azamian, C. B. Bagshaw, and M.L.H. Green, Chem. Eur. J., 9, 3732 (2003). https://doi.org/10.1002/chem.200304872
  6. S.A.C. Carabineiro, M.F.R. Pereira, J. N. Pereira, C. Caparros, V. Sencadas, and S. Lanceros-Mendez, Nanoscale Research Letters, 6, 1 (2011).
  7. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett., 243, 49 (1995). https://doi.org/10.1016/0009-2614(95)00825-O
  8. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science, 282, 1105 (1998). https://doi.org/10.1126/science.282.5391.1105
  9. S. H. Jeong, J. H. Ko, J. B. Park, and W. Park, J. Am. Chem. Soc., 126, 15982 (2004). https://doi.org/10.1021/ja0451867
  10. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, (Academic Press, San Diego, 1996).
  11. H. Dai, A. G. Rinzler, P. Nikolaef, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett., 260, 471 (1996). https://doi.org/10.1016/0009-2614(96)00862-7
  12. V. F. Puntes, K. M. Krishnan, and A. P. Alivisatos, Science, 291, 2115 (2001). https://doi.org/10.1126/science.1057553
  13. H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, and M. Yumura, Appl. Phys. Lett., 77, 79 (2000). https://doi.org/10.1063/1.126883
  14. M. Mizuno, Y. Sasaki, A.C.C. Yu, and M. Inoue, Langmuir, 20, 11305 (2004). https://doi.org/10.1021/la0481694