DOI QR코드

DOI QR Code

WLAN System을 위한 U-slot 및 Short-pin 결합한 바람개비 모양의 이중대역(5.2/5.8GHz) 마이크로스트립 패치 안테나 설계 및 제작

Design and Fabrication of a Weathercock-Shaped Double Bandwidth Microstrip Patch Antenna that Combines U-slot and Short-pin for WLAN Systems Systems

  • 김순섭 (아주대학교 NCW학과 무선네트워크 연구실) ;
  • 최영준 (아주대 장위 국방 연구소) ;
  • 주영달 (하이게인 안테나 (주)) ;
  • 정용주 (하이게인 안테나 (주))
  • 투고 : 2013.02.28
  • 심사 : 2013.05.09
  • 발행 : 2013.05.31

초록

본 논문에서는 IEEE 802.11 기반의 WLAN(5.2/5.8GHz)대역에서 동작하는 바람개비 모양의 마이크로스트립 패치 안테나를 설계 및 제작하였다. 안테나의 크기는 $17.4{\times}17.4mm^2$이며 FR-4 기판을 사용하였다. 이동성을 위해 소형화하였고, 바람개비 패치 모양에 U-slot 및 Short-pin을 삽입하여 이중대역 공진특성 및 적절한 대역폭을 만족하도록 하였다. 또한 단일 양면기판을 사용하였고, 시뮬레이션설계는 바람개비 모양과 U-slot 및 Short-pin의 위치 변화, 패치길이를 최적화하여 제작 및 측정하였다. 제작한 안테나의 대역폭(Return loss<-10dB)은 5.2~5.8GHz대역에서 695MHz의 대역폭을 얻었다. H면과 E면 방사패턴의 3-dB 빔폭이 각각 $81.13^{\circ}$, $85.43^{\circ}$로 넓은 빔폭을 얻었다. 또한 3.17~4.85dBi의 이득을 얻었다.

In this paper, IEEE 802.11 based WLAN(5.2/5.8GHz) wideband Weathercock-shaped microstrip patch antenna was designed and manufactured. The antenna has a size of $17.4{\times}17.4mm^2$ and utilized FR-4 board. The size was minimized for mobility, and Weathercock-shaped U-slot and short-pin was inserted to satisfy adequate bandwidth and double bandwidth resonance characteristics. In addition, the antenna incorporated single both-sided patch, and simulation design optimized the Weathercock-shaped, position of the U-slot and the short-pin, and the length of the patch for the measurement. The manufactured antenna achieved a bandwidth of 695MHz from 5.2~5.8GHz zone(Return loss<-10dB). Achieved a beam width of $81.13^{\circ}$ and $85.43^{\circ}$ for 3-dB beam width of H plane and E p;ane radiation pattern, there was 3.17~4.85dBi gain.

키워드

참고문헌

  1. IEEE, IEEE 802.11 standard, Retrieved 12, 2010, from http://standards.ieee.org/getieee802.
  2. S.-Y. Kang, W.-J. Lee, and H.-D. Park, "Design and fabrication of wideband U-sloted Bow-Tie microstrip antenna for 5.25GHz band wireless LAN," J. KICS, vol. 29, no. 2A, pp. 195-201, Nov. 2003.
  3. L. Setian, Practical Communication Antennas with Wireless Applications, Pretice Hall. 1998
  4. D. M. Pozar, "Microstrip antennas" in Proc. IEEE, vol. 80. no. 1. pp. 79-91, Jan. 1992. https://doi.org/10.1109/5.119568
  5. A. K. Shakelford, K. F. Lee, K. M. Luk, and R. C. Chair, "U-slot patch antenna with shorting pin" Electron. Lett., vol. 37, no. 12, pp. 729-730, June 2001. https://doi.org/10.1049/el:20010519
  6. S.-W. Kwon, S.-H. Lee, B.-M. Lee, H.-R. Kim, and Y.-J. Yoon, "A study on a shorting pin and slot-loaded antenna for harmonic suppression," J. KIEES, vol. 13, no. 8, Sep. 2002.
  7. W.-J. Lee, J.-H. Yoon, S.-Y. Kang, H.-C. Lee, and H.-D. Park, "Design and fabrication of four L-slotted microstrip antenna for 5.25GHz band wireless LAN," J. KICS, vol. 29, no. 3A, July 2003.
  8. C. Li, J. Li, and X. Cai, "A novel self-adaptive transmission scheme over IEEE 802.11 WLAN for supporting multi-service," J. Wireless Commun. Mobile Comput., vol. 6, no. 4, pp. 467-474, June 2006. https://doi.org/10.1002/wcm.288
  9. S. Reed, L. Desclos, C. Terret, and S Toutain, "Patch antenna size reduction by means of inductive slots," Microwave Opt. Technol. Lett., vol. 29, no. 2, pp. 79-81, Apr. 2001. https://doi.org/10.1002/mop.1089
  10. R. K. Raj, M. Joseph, C. K. Aananndan, K. Vasudevan, and P. Mohanan, "A new compact microstrip-fed dual-band coplanar antenna for WLAN applications," IEEE Trans. Antennas Propag., vol. 54, no. 12, pp. 3755-3762, Dec. 2006. https://doi.org/10.1109/TAP.2006.886505
  11. R. R. Ramirez and F. De Flaviis, "Triangular microstrip patch antennas for dual mode 802.11a,b WLAN application," in Proc. IEEE Antennas Propag. Soc. Int. Symp., vol. 4, pp. 44-47, San Antonio, U.S.A., June 2002.