DOI QR코드

DOI QR Code

Anti-Inflammatory Effects of Picrasma Quassioides (D.DON) BENN Leaves Extracts

소태나무 잎 추출물의 항염증 효과

  • Jung, Yeon Seop (Department of Food Science and Technology, Keimyung University) ;
  • Eun, Cheong Su (Department of Food Science and Technology, Keimyung University) ;
  • Jung, Young Tae (Department of Food Science and Technology, Keimyung University) ;
  • Kim, Hyun Jeong (The Center for Traditional Microorganism Resurces, Keimyung University) ;
  • Yu, Mi Hee (Department of Food Science and Technology, Keimyung University)
  • 정연섭 (계명대학교 식품가공학과) ;
  • 은청수 (계명대학교 식품가공학과) ;
  • 정영태 (계명대학교 식품가공학과) ;
  • 김현정 (계명대학교 전통미생물자원개발 및 산업화 연구(TMR)센터) ;
  • 유미희 (계명대학교 식품가공학과)
  • Received : 2013.03.11
  • Accepted : 2013.05.27
  • Published : 2013.05.30

Abstract

This study was performed to evaluate the anti-inflammatory and antioxidant activities of methanol extract from the leaves of Picrasma quassioides BENNET (PLME). The antioxidant effects of PLME were measured based on polyphenol and flavonoid contents. PLME was found to have $367.52{\mu}g/mg$ and $46.61{\mu}g/mg$ high polyphenol and flavonoid contents. Cell viability was determined by MTT assay. The production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) was measured by Griess assay and enzyme-linked immunosorbent assay (ELISA). In order to effectively anti-inflammatory agents, we examined the inhibitory effects on the production of lipopolysaccharide (LPS)-induced NO and $PGE_2$ in RAW 264.7 cells. PLME significantly decreased the production of NO and $PGE_2$ in a dose-dependent manner, and also reduced the expression of iNOS, a COX-2 protein. In addition, PLME reduced the NF-${\kappa}B$, $I{\kappa}B$ phosphorylation in RAW 264.7 cells upon stimulation with LPS (100 ng/ml) for 24 h. These results provide evidence for the anti-inflammatory and antioxidant effects of Picrasma quassioides leaves.

본 연구에서는 쌍떡잎식물 쥐손이풀목 소태나무과에 속하는 소태나무 잎 methanol 추출물을 이용하여 항염증 및 항산화 활성을 확인해 보았다. 먼저, 소태나무 잎 methanol 추출의 항산화 활성을 알아보기 위해 폴리페놀, 플라보노이드 함량을 측정하였으며 그 결과, 소태나무 잎 추출물에서 폴리페놀과 플라보노이드의 함량은 각각 $367.52{\mu}g/mg$, $46.41{\mu}g/mg$으로 나타나 플라보노이드 보다는 다량의 폴리페놀을 함유하는 것을 확인하였다. 항염증 활성을 확인하기 위해 염증 매개물질인 NO와 염증성 cytokine인 $PGE_2$를 생성을 측정하였다. 소태나무 잎추출물을 LPS로 염증을 유도한 대식세포에 농도별로 처리한 결과 NO의 생성을 $100{\mu}g/ml$의 농도에서 80%까지 억제하는 것으로 나타났으며, 염증성 cytokine인 $PGE_2$의 생성을 $50{\mu}g/ml$, $100{\mu}g/ml$의 농도에서 각각 85%, 90%까지 생성을 억제하는 것으로 나타났다. 또한, 소태나무 잎 추출물이 염증반응과 관련된 iNOS, COX-2, p-NF-${\kappa}B$, p-$I{\kappa}B$의 단백질 발현에 미치는 영향을 확인한 결과, iNOS 단백질은 농도 유의적으로 그 발현이 감소하는 것을 확인하였으며, COX-2 단백질의 경우 12.5, 25, $50{\mu}g/ml$의 농도에서는 큰 변화 나타나지 않았지만 $100{\mu}g/ml$의 농도에서 그 발현이 크게 억제되는 것을 확인하였다. 또한 iNOS와 COX-2의 발현을 조절하는 NF-${\kappa}B$ signaling을 확인해 본 결과, $I{\kappa}B$와 NF-${\kappa}B$의 인산화를 효과적으로 감소시킴으로써 항염증 활성을 나타내는 것을 확인 할 수 있었다. 이상의 결과와 같이, 소태나무 잎 추출물은 항산화 활성과 우수한 항염증 활성을 나타내는 기능성 소재로의 활용이 가능할 것이라고 사료된다.

Keywords

References

  1. Azad, N., Rojanasakul, Y. and Vallyathan, V. 2008. Inflammation and lung cancer: roles of reactive oxygen/ nitrogen species. J Toxicol Env Heal B 11, 11-15.
  2. Brune, B., Zhou. J. and Von Knethen, A. 2003. Nitric oxide, oxidative stress, and apoptosis. Kidney Int Suppl 84, 22-24.
  3. Cheon, Y. P., Mollah, M. L., Park, C. H., Hong, J. H., Lee, G. D., Song, J. C. and Kim, K. S. 2009. Bulnesia Sarmienti Aqueous Extract Inhibits Inflammation in LPS-Stimulated RAW 264.7 Cells. J Life Sci 19, 479-485. https://doi.org/10.5352/JLS.2009.19.4.479
  4. Chung, E. K., Seo, E. H., Park. J. H., Shim, J. H., Kim. K. H. and Lee, B. R. 2011. Anti-inflammaatory and anti-allergic effect of extracts from organic soybean. Korean J Organic Agric 2, 245-253.
  5. Chung, Y. A. and Lee, J. K. 2003. Antioxidative properties of phonolic compounds extracted from black rice. J Korean Soc Food Sci Nutr 32, 948-951. https://doi.org/10.3746/jkfn.2003.32.6.948
  6. Delanty, N. and Dichter, M. A. 1998. Oxidative injury in the nervous system. Acta Neurol Scand 117, 463-466.
  7. Folin, O. and Denis, W. 1912. On Phosphotungastic-phosoho- mdybdic compounds as color reagents. J Biol Chem 12, 239-249.
  8. Golden, B. D. and Abramson, S. B. 1999. Selective cyclooxygenase- 2 inhibitor. Rheum Dis Clin N Am 25, 359-378. https://doi.org/10.1016/S0889-857X(05)70073-9
  9. Green, L. C., Reade, J. L. and Ware, C. F. 1984. Rapid colorimetric assay for cell viability: application to the quantitation of cytotoxic and growth inhibitory lymphokines. J Immunol Methods 126, 131-138.
  10. Green, L. C., Wagner, D. A. and Glogowski, J. 1982. Analysis of nitrate, and nitrate in biological fluids. Anal Biochem 126, 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  11. Higuchi, M., Hisgahi, N., Taku, H. and Osaea, T. 1990. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophage. J Immunol 144, 1425-1431.
  12. Ilorton, J, K., Williams, A. S., Smith-Philips, Z., Martin, R. C. and O'Beirne, G. 1999. Intracellular measurement of prostaglandin E2 : Effects of anti- inflammatory drugs on cyclooxygenase activity and prostanoid expression. Anal Biochem 271, 18-28. https://doi.org/10.1006/abio.1999.4118
  13. Kazuko, Y., Saori, S. and Shigenobu, A. 1995. Phenylpropanooids and other secondary metabolites from fresh fruits of Picrasma quassioides. Phytochemistry 40, 253-256. https://doi.org/10.1016/0031-9422(95)00234-X
  14. Kim, D. H., An, B. J., Kim, S. G., Park, T. S., Park, G. H. and Son, J. H. 2011. Anti-inflammatory effect of Ligularia fischeri, Solidago virga-aurea and Aruncus dioicus complex extract in RAW 264.7 cells. J Life Sci 21, 648-683.
  15. Lee, E. S., Ju, H. K., Moon, T. C., Lee, E., Jahng, Y., Lee, S. H., Son, J. K., Baek, S. H. and Chang, H. W. 2004. Inhibition of nitric oxide and tumor necrosis factor-$\alpha$ (TNF- $\alpha$) production by propenone compound through blockade of nuclear factor (NF)-kB activation in cultured murine macrophages. Biol Pharm Bull 27, 617-620. https://doi.org/10.1248/bpb.27.617
  16. Lee, H. N., Lim, D. Y., Lim, J. D., Kim, J. D. and Park, H. Y. 2011. Anti-inflammatory effect of ethanol extract from Eupatorium japonicum. Korean J Food Sci Technol 43, 65-71. https://doi.org/10.9721/KJFST.2011.43.1.065
  17. Lee, S. G., Jeong, H. J., Lee, E. J., Kim, J. B. and Choi, S. W. 2011. Antioxidant and anti-inflammatory activities of ethanol extracts from medicinal herb mixtures. Korean J Food Sci Technol 43, 200-205. https://doi.org/10.9721/KJFST.2011.43.2.200
  18. Liden, J., Rafter, I., Truss, M., Gustafsson, J. A. and Okret, S. 2000. Glucocorticoid effects on NF-kappaB binding in the transcription of the ICAM-1 gene. Biochem Bioph Res Co 273, 1008-1014. https://doi.org/10.1006/bbrc.2000.3079
  19. Luyengi, L., Suh, N. and Fong, H. 1996. A lignan and four terpenoids from Brucea javanica that induce differentiation with cultured HL-60 promyelocytic leukemia cells. Phytochemistry 43, 409-412. https://doi.org/10.1016/0031-9422(96)00258-0
  20. McCartney-Francis, N., Allen, J. B., Mizel, D. E., Albina, J. E., Xie, Q. W., Nathan, C. F. and Wahl, S. M. 1993. Suppression of arthritis by an inhibitor of nitric oxide synthase. J Exp Med 178, 749-754. https://doi.org/10.1084/jem.178.2.749
  21. Murae, T., Tsuyuki, T., Ikeda, T., Nishihama, T. and Takahasshi, T. 1971. Bitter principles of Picrasma ailanthoides Planchon, Nigakilactones A, B, C, D, E, and F. Tetrahedron 27, 1545-1555. https://doi.org/10.1016/S0040-4020(01)98019-6
  22. Miyake, K. 2004. Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol 12, 186-192. https://doi.org/10.1016/j.tim.2004.02.009
  23. Jung, Y. T., Lee, I. S., Whang, K., and Yu, M. H. 2012. Antioxidant effects of Picrasma quassioides and Chamaecyparis obtusa (S. et Z.) ENDL extracts. J Life Sci 22, 354-359. https://doi.org/10.5352/JLS.2012.22.3.354
  24. Nivea, M., Sampietro, A. and Vattuone, M. 2000. Comparison of the free radical scavenging activity of propolis from several relisions of Argentina. J Ethnopharmacol 71, 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  25. Noh, K. H., Jang, J. H, Min, K. H., Chinzoring, R., Lee, M. O. and Song, Y. S. 2011. Suppressive effect of green tea seed coat ethly acetate fraction on inflammation and its mechanism in RAW 264.7 macrophage cell. J Korean Soc Food Sci Nutr 40, 625-634. https://doi.org/10.3746/jkfn.2011.40.5.625
  26. Ohmoto, T., Nikaido, T., Koike, K., Kohda, K. and Sankawa, U. 1988. Inhibition of adenosine 3',5'-cyclic monophosphate phosphodiesterase by alkaloids. II. Chem Pharm Bull Tokyo 36, 4588-4592. https://doi.org/10.1248/cpb.36.4588
  27. Pruett, S. B., Fan, R. and Zheng, Q. 2003. Characterization of glucocorticoid receptor translocation, cytoplasmic IkappaB, nuclear NFkappaB, and activation of NFkappaB in T lymphocytes exposed to stress-inducible concentrations of corticosterone in vivo. Int Immunopharmacol 3, 1-16. https://doi.org/10.1016/S1567-5769(02)00081-4
  28. Rocca, B. and FitzGerald, G. A. 2002. Cyclooxygenases and prostaglandins: shaping up the immune response. Int Immunopharmacol 2, 603-630. https://doi.org/10.1016/S1567-5769(01)00204-1
  29. Shon, D. H., Choi. D. W. and Kim, M. H. 2012. Improvement of anti-inflammation activity of Gardeniae fructus extract by the tratment of $\beta$-Glucisudase. Korean J Food Sci Technol 44, 331-336. https://doi.org/10.9721/KJFST.2012.44.3.331
  30. Stuehr, D. J., Cho, H. J., Weon, N. S., Weise, M. F. and Nathan, C. F. 1991. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: An FAD-and FMN-containing flavoprotein. P Natl Acad Sci USA 88, 7773-7777. https://doi.org/10.1073/pnas.88.17.7773
  31. Kim, H. K., Lee, M. Y., Hong, I. P., Choi, Y. S., Kim, N. S., Lee, M. L. and Lee, S. C. 2010. Antioxidant and antimicrobial capacity of several monofloral honey correlation with phenolic and flavonoid contents. Korean J Apiculture 25, 275-282.
  32. Turini, M. E. and DuBois, R. N. 2002. Cyclooxygenase-2: a therapeutic target. Annu Rev Med 53, 35-57. https://doi.org/10.1146/annurev.med.53.082901.103952
  33. Weisz, A., Cicatiello, L. and Esumi, H. 1996. Regulation of the mouse inducible-type nitric oxid synthase gene promoter by interferon-${\gamma}$, bacterial lipopolysaccharide, and NG-monomethyl-L-arginine. Biochem J 316, 209-215.
  34. Willoughby, D. A. 1975. Human arthritis applied to animal models. Towards a better therapy. Ann Rheum Dis 34, 471-478. https://doi.org/10.1136/ard.34.6.471
  35. Yoshizawa, S., Horiuchi, T., Hirota, F., Takashi, Y., Okuda, T. and Sugimura, T. 1987. Antitumor promoting activity of (-)-epigallocatechin gallate, the main constituent of tannin in green tea. Phytother Res 1, 44-47. https://doi.org/10.1002/ptr.2650010110
  36. Yun, H. Y., Dawson, V. L. and Dawson, T. M. 1996. Neurobiology of nitric oxide. Crit Rev Neurobiol 10, 291-316. https://doi.org/10.1615/CritRevNeurobiol.v10.i3-4.20

Cited by

  1. Anti-oxidant and Anti-inflammatory Activities of Barley Sprout Extract vol.26, pp.5, 2016, https://doi.org/10.5352/JLS.2016.26.5.537
  2. Anti-Oxidant Activity and Anti-Inflammatory Effects of Spiraea fritschiana Schneid Extract vol.24, pp.1, 2016, https://doi.org/10.7783/KJMCS.2016.24.1.31
  3. Anti-Inflammatory Effect of Ethanol Extract from Grateloupia elliptica Holmes on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1128
  4. Anti-inflammatory Activity of Hizikia fusiformis Extracts Fermented with Lactobacillus casei in LPS-stimulated RAW 264.7 Macrophages vol.30, pp.1, 2015, https://doi.org/10.7841/ksbbj.2015.30.1.38
  5. Antioxidant and Anti-inflammatory Effects of Extracts from the Flowers of Weigela subsessilis on RAW 264.7 Macrophages vol.26, pp.3, 2016, https://doi.org/10.5352/JLS.2016.26.3.338
  6. Comparison of Effect of Water and Ethanolic Extract from Roots and Leaves of Allium hookeri vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1808
  7. on pro-inflammatory responses in lipopolysaccharide-induced Raw 264.7 Cells vol.60, pp.4, 2017, https://doi.org/10.3839/jabc.2017.057