생체모방 네트워킹 기술

  • Published : 2013.12.31

Abstract

생태계를 구성하고 있는 각 생물체들은 외부에서의 제어 개체 없이 독자적이면서 매우 단순하고 적은 수의 행동 규칙의 준수를 통하여 해당 생태계의 유지, 관리 및 동기화 등의 기능을 수행하고 있음을 관찰 할 수 있다. 이처럼 지구상의 다양한 생물체의 행동 원리를 관찰하고 이를 기반으로 모델링한 알고리듬을 생체모방 알고리듬 (biologically inspired or bio-inspired algorithm)이라 한다. 생체모방 알고리즘은 동종 혹은 이종의 다수의 개체가 존재하고, 주변 환경이 동적으로 변하며, 사용가능한 자원의 제약이 정해져 있을 때, 각 개체들이 분산 및 자율적으로 움직이는 환경에서 안정성, 확장성, 적응성과 같은 특징을 보여주는데, 이는 통신 네트워크 환경 및 서비스 요구사항과 유사성을 갖는다. 본 논문에서는 최근에 발표된 생체모방 알고리즘으로 통신 및 네트워킹 기술로 적용 가능한 Huddling Penguins 알고리즘, Krill Herd알고리즘, Cuckoo 알고리즘에 대해 살펴보고, 관련 프로젝트 및 연구 동향을 정리한다.

Keywords

References

  1. F. Dressler, O. B. Akan, "A Survey on Bio-inspired Networking," Computer Networks Journal (Elsevier), vol. 54, no. 6, pp. 881-900, April 2010. https://doi.org/10.1016/j.comnet.2009.10.024
  2. R.R. Vincent, A. Cucheval, Y. Hermar, and M.A.K. Williams, "Bio-inspired network optimization in soft materials - Insights from the plant cell wall," The European Physical Journal E, Vol. 28, Issue 1, pp 79-87, January 2009. https://doi.org/10.1140/epje/i2008-10416-2
  3. F. Dressler, O. B. Akan, "Bio-inspired Networking: From Theory to Practice," IEEE Communications Magazine, vol. 48, no. 11, pp. 176-183, November 2010. https://doi.org/10.1109/MCOM.2010.5560602
  4. Dorigo, M., Birattari, M., Stutzle, T., "Ant colony optimization", IEEE Computational Intelligence Magazine, vol. 1, no. 4, pp. 28-39, Nov. 2006. https://doi.org/10.1109/CI-M.2006.248054
  5. M. Dorigo, C. Blum, "Ant colony optimization theory: A survey", Theoretical Computer Science, vol. 344, pp.243-278, Nov. 2005. https://doi.org/10.1016/j.tcs.2005.05.020
  6. Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S and Zaidi M. "The Bees Algorithm," Technical Note, Manufacturing Engineering Centre, Cardiff University, UK, 2005.
  7. Karaboga.D, "An idea based on honey bee swarm for numerical optimization.", Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  8. G. Werner-Allen, G. Tewari, A. Patel, R.Nagpal, and M. Welsh,"Firefly-Inspired Sensor Network Synchronicity with Realistic Radio Effects."InSenSys, 2005.
  9. J. Degesys, I. Rose, A. Patel, R. Nagpal, "Desync: Self-organizing desynchronization and tdma on wireless sensor networks,"International Conference on Information Processing in Sensor Networks, ACM, pp. 11-20, 2007.
  10. Olfati-Saber, R., "Flocking for multi-agent dynamic systems: algorithms and theory," IEEE Transactions on Automatic Control, vol.51, no.3, pp. 401- 420, March 2006. https://doi.org/10.1109/TAC.2005.864190
  11. J. A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani, "Asymptotic flocking dynamics for thekinetic cucker-smale model," SIAM Journal on Mathematical Analysis, 2010.
  12. I. Chlamtac, M. Conti, J.J. Liu, "Mobile ad hoc networking: imperatives and challenges," Elsevier Ad Hoc Networks, vol. 1, no. 1, pp. 13-64, 2003. https://doi.org/10.1016/S1570-8705(03)00013-1
  13. D.P.Zitterbart, B.Wienecke, J.P.Butler, B.Fabry, "Coordinated Movements Prevent Jamming in an Emperor Penguin Huddle," PLoS one 6(6), e20260, 2011. https://doi.org/10.1371/journal.pone.0020260
  14. A.Waters, F.Blanchette, A.D.Kim, "Modeling Huddling Penguins," PLoS one 7, e50277, 2012. https://doi.org/10.1371/journal.pone.0050277
  15. A.H. Gandomi, A.H. Alavi, "Krill herda new bioinspired optimization algorithm," Communications in Nonlinear Science and Numerical Simulation, vol.17, issue.12, pp.4831-4845, December 2012. https://doi.org/10.1016/j.cnsns.2012.05.010
  16. G.G.Wang, L.Guo, A.H.Gandomi, A.H.Alavi, and H.Duan, "Simulated Annealing-Based Krill Herd Algorithm for Global Optimization," Abstract and Applied Analysis, vol.2013, pp.11, 2013.
  17. X.S.Yang, S.Deb, "Cuckoo Search via Levy Flights," Nature & Biologically Inspired Computing, pp.210- 214, December 2009.
  18. R. Rajabioun, "Cuckoo Optimization Algorithm," Applied Soft Computing, vol.11, issue.8, pp.5508-5518, December 2011. https://doi.org/10.1016/j.asoc.2011.05.008
  19. M. Eigen, P. Schuster, "The Hypercycle: A Principle of Natural Self Organization", Springer, 1979.
  20. M. Wang, T. Suda, "The Bio-Networking Architecture: A Biologically inspired Approach to the Design of Scalable, Adaptive and Survivable/Available Network Applications", IEEE Symposium on Applications and the Internet (SAINT), 2001.
  21. J. Suzuki, T. Suda, "Adaptive Behavior Selection of Autonomous Objects in the Bio-Networking Architecture," Symposium on Autonomous Intelligent Networks and Systems, 2002.
  22. Dini, P, Nehaniv, C L, Egri-Nagy, A, Schilstra, M J, Schreckling, D, Posegga, J, Horvath, G and Munro, A J, "Biological and Mathematical Basis of Interaction Computing," International Journal of Unconventional Computing, vol.8, issue.4, pp.283 -287, 2012.
  23. Nehaniv, C L, Schilstra, M J, den Breems, N, Munro, A J and Schreckling, D, "What Functors and Categories are Suitable for Relating Mathematical and Biological Models," Proceedings of the 1st BIOMICS Summer Workshop, University of Debrecen, July, 2013.
  24. R.A.Mahale, S.D.Chavan, "A Survey: Evolutionary and Swarm Based Bio-Inspired Optimization Algorithms," International Journal of Scientific and Research Publications, vol.2, issue.12, December 2012.