DOI QR코드

DOI QR Code

Antimicrobial surfaces for craniofacial implants: state of the art

  • Actis, Lisa (Department of Biomedical Engineering, University of Texas at San Antonio) ;
  • Gaviria, Laura (Department of Biomedical Engineering, University of Texas at San Antonio) ;
  • Guda, Teja (Department of Biomedical Engineering, University of Texas at San Antonio) ;
  • Ong, Joo L. (Department of Biomedical Engineering, University of Texas at San Antonio)
  • Received : 2013.04.01
  • Accepted : 2013.04.02
  • Published : 2013.04.30

Abstract

In an attempt to regain function and aesthetics in the craniofacial region, different biomaterials, including titanium, hydroxyapatite, biodegradable polymers and composites, have been widely used as a result of the loss of craniofacial bone. Although these materials presented favorable success rates, osseointegration and antibacterial properties are often hard to achieve. Although bone-implant interactions are highly dependent on the implant's surface characteristics, infections following traumatic craniofacial injuries are common. As such, poor osseointegration and infections are two of the many causes of implant failure. Further, as increasingly complex dental repairs are attempted, the likelihood of infection in these implants has also been on the rise. For these reasons, the treatment of craniofacial bone defects and dental repairs for long-term success remains a challenge. Various approaches to reduce the rate of infection and improve osseointegration have been investigated. Furthermore, recent and planned tissue engineering developments are aimed at improving the implants' physical and biological properties by improving their surfaces in order to develop craniofacial bone substitutes that will restore, maintain and improve tissue function. In this review, the commonly used biomaterials for craniofacial bone restoration and dental repair, as well as surface modification techniques, antibacterial surfaces and coatings are discussed.

Keywords

References

  1. Abu-Serriah MM, McGowan DA, Moos KF, Bagg J. Extra-oral endosseous craniofacial implants: current status and future developments. Int J Oral Maxillofac Surg 2003;32:452-8. https://doi.org/10.1016/S0901-5027(03)90426-7
  2. Bencharit S. Challenges and prospective applications of extra-oral implants for maxilloracial rehabilitation. Anaplastology 2012;1:e103.
  3. Wan DC, Nacamuli RP, Longaker MT. Craniofacial bone tissue engineering. Dent Clin North Am 2006;50:175-90. https://doi.org/10.1016/j.cden.2005.11.003
  4. Dumas JE, BrownBaer PB, Prieto EM, Guda T, Hale RG, Wenke JC, et al. Injectable reactive biocomposites for bone healing in critical-size rabbit calvarial defects. Biomed Mater 2012;7:024112. https://doi.org/10.1088/1748-6041/7/2/024112
  5. Kretlow JD. Biomaterial-based strategies for craniofacial tissue engineering [PhD thesis]. Houston: Department of Bioengineering, Rice University; 2010. p. 416.
  6. Pagni G, Kaigler D, Rasperini G, Avila-Ortiz G, Bartel R, Giannobile WV. Bone repair cells for craniofacial regeneration. Adv Drug Deliv Rev 2012;64:1310-9. https://doi.org/10.1016/j.addr.2012.03.005
  7. Kim J, McBride S, Fulmer M, Harten R, Garza Z, Dean DD, et al. Fiber-reinforced calcium phosphate cement formulations for cranioplasty applications: a 52-week duration preclinical rabbit calvaria study. J Biomed Mater Res B Appl Biomater 2012;100:1170-8.
  8. Thimmappa B, Girod SC. Principles of implant-based reconstruction and rehabilitation of craniofacial defects. Craniomaxillofac Trauma Reconstr 2010;3:33-40. https://doi.org/10.1055/s-0030-1249372
  9. Wolfaardt JF, Wilkes GH, Parel SM, Tjellström A. Craniofacial osseointegration: the Canadian experience. Int J Oral Maxillofac Implants 1993;8:197-204.
  10. Kretlow JD, Young S, Klouda L, Wong M, Mikos AG. Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater 2009;21:3368-93. https://doi.org/10.1002/adma.200802009
  11. Stanford CM. Surface modifications of dental implants. Aust Dent J 2008;53(Suppl 1):S26-33. https://doi.org/10.1111/j.1834-7819.2008.00038.x
  12. Davies JE. Understanding peri-implant endosseous healing. Dent Educ 2003;67:932-49.
  13. Kuzyk PR, Schemitsch EH. The basic science of peri-implant bone healing. Indian J Orthop 2011;45:108-15. https://doi.org/10.4103/0019-5413.77129
  14. Wang W, Ouyang Y, Poh CK. Orthopaedic implant technology: biomaterials from past to future. Ann Acad Med Singapore 2011;40:237-44.
  15. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Prog Mater Sci 2009;54:397-425. https://doi.org/10.1016/j.pmatsci.2008.06.004
  16. Black J, Hastings GW. Handbook of biomaterial properties. London, New York: Chapman & Hall; 1998.
  17. Le Guehennec L, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater 2008;4:535-43. https://doi.org/10.1016/j.actbio.2007.12.002
  18. Norowski PA Jr, Bumgardner JD. Biomaterial and antibiotic strategies for peri-implantitis: a review. J Biomed Mater Res B Appl Biomater 2009;88:530-43.
  19. Shirtliff M, Leid JG. The role of biofilms in device-related infections. Springer series on biofilms, 3. Berlin: Springer; 2009.
  20. Piattelli A, Cosci F, Scarano A, Trisi P. Localized chronic suppurative bone infection as a sequel of peri-implantitis in a hydroxyapatite-coated dental implant. Biomaterials 1995;16:917-20. https://doi.org/10.1016/0142-9612(95)93116-U
  21. Gotz F. Staphylococcus and biofilms. Mol Microbiol 2002;43: 1367-78. https://doi.org/10.1046/j.1365-2958.2002.02827.x
  22. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2011;2:445-59. https://doi.org/10.4161/viru.2.5.17724
  23. Richter WS, Ivancevic V, Meller J, Lang O, Le Guludec D, Szilvazi I, et al. 99mTc-besilesomab (Scintimun) in peripheral osteomyelitis: comparison with 99mTc-labelled white blood cells. Eur J Nucl Med Mol Imaging 2011;38:899-910. https://doi.org/10.1007/s00259-011-1731-2
  24. Yaszemski MJ, Trantolo DJ, Lewandrowski KU, Hasirci V, Altobelli DE, Wise DL. Biomaterials in Orthopedics. New York: Marcel Dekker; 2004.
  25. Ramaswamy Y, Wu C, Zreiqat H. Orthopedic coating materials: considerations and applications. Expert Rev Med Devices 2009;6:423-30. https://doi.org/10.1586/erd.09.17
  26. Ozcan M, Hämmerle C. Titanium as a reconstruction and implant material in dentistry: advantages and Pitfalls. Materials 2012;5:1528-45. https://doi.org/10.3390/ma5091528
  27. Coelho PG, Granjeiro JM, Romanos GE, Suzuki M, Silva NR, Cardaropoli G, et al. Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B Appl Biomater 2009;88:579-96.
  28. Jackson MJ, Ahmed W. Surface engineered surgical tools and medical devices. New York: Springer; 2007.
  29. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004;83:529-33. https://doi.org/10.1177/154405910408300704
  30. Schwarz F, Ferrari D, Herten M, Mihatovic I, Wieland M, Sager M, et al. Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. Periodontol 2007;78:2171-84. https://doi.org/10.1902/jop.2007.070157
  31. Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J. Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA titanium implants: preliminary results of a pilot study in dogs. Clin Oral Implants Res 2007;18:481-8. https://doi.org/10.1111/j.1600-0501.2007.01341.x
  32. Sul YT, Johansson CB, Röser K, Albrektsson T. Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials 2002;23:1809-17. https://doi.org/10.1016/S0142-9612(01)00307-6
  33. Sul YT, Johansson C, Albrektsson T. Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces. Int J Prosthodont 2006;19:319-28.
  34. Al-Nawas B, Groetz KA, Goetz H, Duschner H, Wagner W. Comparative histomorphometry and resonance frequency analysis of implants with moderately rough surfaces in a loaded animal model. Clin Oral Implants Res 2008;19:1-8.
  35. Sul YT, Johansson C, Byon E, Albrektsson T. The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials 2005;26:6720-30. https://doi.org/10.1016/j.biomaterials.2005.04.058
  36. Sul YT, Johansson CB, Jeong Y, Wennerberg A, Albrektsson T. Resonance frequency and removal torque analysis of implants with turned and anodized surface oxides. Clin Oral Implants Res 2002;13:252-9. https://doi.org/10.1034/j.1600-0501.2002.130304.x
  37. Yang Y, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process--an alternative to plasma spraying. Biomaterials 2005;26:327-37. https://doi.org/10.1016/j.biomaterials.2004.02.029
  38. de Groot k, Klein COAT, Wolke JGC, de Blieck-Hogervorst JMA. Plasma-sprayed coating of calcium phosphate. In: Yamamuro T, Hench LL, Wilson J, eds. Handbook of bioactive ceramics, Vol. II: Calcium phosphate and Hydroxyapatite Ceramics. Boca Raton: CRC Press; 1990:133-42.
  39. Ong JL, Carnes DL, Bessho K. Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo. Biomaterials 2004;25:4601-6. https://doi.org/10.1016/j.biomaterials.2003.11.053
  40. Lemons J. Biomaterials for dental implants. In: Misch CE, ed. Contemporary implant dentistry. St. Louis: Mosby; 1999.
  41. Lacefield WR. Current status of ceramic coatings for dental implants. Implant Dent 1998;7:315-22. https://doi.org/10.1097/00008505-199807040-00010
  42. Kay JF. Calcium phosphate coatings for dental implants. Current status and future potential. Dent Clin North Am 1992;36:1-18.
  43. Lacefield WR. Hydroxyapatite coatings. Ann N Y Acad Sci 1988; 523:72-80. https://doi.org/10.1111/j.1749-6632.1988.tb38501.x
  44. Goene RJ, Testori T, Trisi P. Influence of a nanometer-scale surface enhancement on de novo bone formation on titanium implants: a histomorphometric study in human maxillae. Int J Periodontics Restorative Dent 2007;27:211-9.
  45. Berglundh T, Abrahamsson I, Albouy JP, Lindhe J. Bone healing at implants with a fluoride-modified surface: an experimental study in dogs. Clin Oral Implants Res 2007;18:147-52. https://doi.org/10.1111/j.1600-0501.2006.01309.x
  46. Monjo M, Petzold C, Ramis JM, Lyngstadaas SP, Ellingsen JE. In vitro osteogenic properties of two dental implant surfaces. Int J Biomater 2012;2012:181024.
  47. Abrahamsson I, Albouy JP, Berglundh T. Healing at fluoride-modified implants placed in wide marginal defects: an experimental study in dogs. Clin Oral Implants Res 2008;19:153-9. https://doi.org/10.1111/j.1600-0501.2007.01454.x
  48. Goodrich JT, Sandler AL, Tepper O. A review of reconstructive materials for use in craniofacial surgery bone fixation materials, bone substitutes, and distractors. Childs Nerv Syst 2012;28:1577-88. https://doi.org/10.1007/s00381-012-1776-y
  49. Cho YR, Gosain AK. Biomaterials in craniofacial reconstruction. Clin Plast Surg 2004;31:377-85. https://doi.org/10.1016/j.cps.2004.03.001
  50. Kretlow JD, Young S, Klouda L, Wong M, Mikos AG. Injectable biomaterials for regenerating complex craniofacial tissues. Adv Mater 2009;21:3368-93. https://doi.org/10.1002/adma.200802009
  51. BioMet. TiMesh$^{\circledR}$, Titanized polymers. 2013 [cited 2013 Feb 26]. Available from: http://www.biomet.com/biologics/timesh.cfm.
  52. Schug-Pass C, Tamme C, Tannapfel A, Kockerling F. A lightweight polypropylene mesh (TiMesh) for laparoscopic intraperitoneal repair of abdominal wall hernias: comparison of biocompatibility with the DualMesh in an experimental study using the porcine model. Surg Endosc 2006;20:402-9. https://doi.org/10.1007/s00464-004-8277-3
  53. Hollinsky C, Sandberg S, Koch T, Seidler S. Biomechanical properties of lightweight versus heavyweight meshes for laparo-scopic inguinal hernia repair and their impact on recurrence rates. Surg Endosc 2008;22:2679-85. https://doi.org/10.1007/s00464-008-9936-6
  54. Ge X, Leng Y, Bao C, Xu SL, Wang R, Ren F. Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants. J Biomed Mater Res A 2010;95:588-99.
  55. Polypid. Stretching the limits of effective long term drug delivery. 2013 [cited 2013 Feb 28]. Available from: http://www.polypid.com/.
  56. Miyamoto Y, Ishikawa K, Fukao H, Sawada M, Nagayama M, Kon M, et al. In vivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials 1995;16:855-60. https://doi.org/10.1016/0142-9612(95)94147-D
  57. Martin TP, Kooi SE, Chang SH, Sedransk KL, Gleason KK. Initiated chemical vapor deposition of antimicrobial polymer coatings. Biomaterials 2007;28:909-15. https://doi.org/10.1016/j.biomaterials.2006.10.009
  58. Crawford K, Berrey BH, Pierce WA, Welch RD. In vitro strength comparison of hydroxyapatite cement and polymethylmethacrylate in subchondral defects in caprine femora. J Orthop Res 1998;16: 715-9. https://doi.org/10.1002/jor.1100160613
  59. Dickson KF, Friedman J, Buchholz JG, Flandry FD. The use of BoneSource hydroxyapatite cement for traumatic metaphyseal bone void filling. J Trauma 2002;53:1103-8. https://doi.org/10.1097/00005373-200212000-00012
  60. Belkoff SM, Mathis JM, Jasper LE, Deramond H. An ex vivo biomechanical evaluation of a hydroxyapatite cement for use with vertebroplasty. Spine (Phila Pa 1976) 2001;26:1542-6. https://doi.org/10.1097/00007632-200107150-00008
  61. Stryker. BoneSource: Ostoconductive HA bone paste. 2004 [cited 2013 Mar 1]. Available from: http://www.stryker.com/en-us/GSDAMRetirement/index.htmstellent/groups/public/documents/web_prod/023526.pdf.
  62. Spies CK, Schnürer S, Gotterbarm T, Breusch SJ. Efficacy of Bone SourceTM and CementekTM in comparison with EndobonTM in critical size metaphyseal defects, using a minipig model. J Appl Biomater Biomech 2010;8:175-85.
  63. DePuy Synthes. Norian SRS. 2012 [cited 2013 Mar 1]. Available from: http://www.synthes.com/sites/intl/Products/Biomaterials/Trauma/Pages/Norian_SRS.aspx.
  64. DePuy Synthes. Norian SRS. Distal radius-impacted intra-articular fracture. 2007 [cited 2013 Mar 1]. Available from: http://www.synthes.com/MediaBin/International%20DATA/036.000.883.pdf.
  65. DePuy Synthes. Norian SRS. Cystic lesion (pelvis) - curettage of a cystic lesion. 2006 [cited 2013 Mar 1]. Available from: http://www.synthes.com/MediaBin/International%20DATA/036.000.886.pdf.
  66. DePuy Synthes. Norian SRS. Calcaneus. 2006 [cited 2013 Mar 1]. Available from: http://www.synthes.com/MediaBin/International%20DATA/036.000.886.pdf.
  67. BioMet Microfixation. Biomet Microfixation Mimix$^{\circledR}$ and Mimix$^{\circledR}$ QS Bone Replacement Systems. 2012 [cited 2013 Mar 4]. Available from: http://www.lorenzsurgical.com/product.php?item=24&cat=9;%20http://www.lorenzsurgical.com/downloads/LOR-7013-MimixBro%20(m)-FINAL.pdf.
  68. Zimmer. Palacos$^{\circledR}$ Bone Cements. 2013 [cited 2013 Mar 4]. Available from: http://www.zimmer.com/en-US/hcp/surgical/product/palacos-bone-cements.jspx.
  69. NovaBone. NovaBone: bioactive synthetic bone graft. 2009 [cited 2013 Mar 4]. Available from: http://www.novabone.com/NB/novabone_works.html.
  70. Verne E, Ferraris M, Jana C, Paracchini L. Bioverit$^{\circledR}$ I base glass/Ti particulate biocomposite: "in situ" vacuum plasma spray deposition. J Eur Ceram Soc 2000;20:473-9. https://doi.org/10.1016/S0955-2219(99)00181-8
  71. Neovius E, Engstrand T. Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast Reconstr Aesthet Surg 2010;63:1615-23. https://doi.org/10.1016/j.bjps.2009.06.003
  72. Stryker. Medpor$^{\circledR}$. 2013 [cited 2013 Mar 4]. Available from: http://www.stryker.com/en-us/products/Craniomaxillofacial/MEDPOR/index.htm.
  73. OsteoSymbionicsTM. CLEARSHIELDTM Craniofacial Implant. 2011 [cited 2013 Mar 4]. Available from: http://www.osteosymbionics.com/implants/.
  74. BioMet Microfixation. LactoSorb$^{\circledR}$ SE: The leader in resorbable technology. 2013 [cited 2013 Mar 4]. Available from: http://www.lorenzsurgical.com/product.php?item=17.
  75. BonAlive Biomaterials Ltd. BonAlive$^{\circledR}$. 2012 [cited 2013 Mar 4]. Available from: http://www.bonalive.com/.
  76. Harris LG, Tosatti S, Wieland M, Textor M, Richards RG. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 2004;25:4135-48. https://doi.org/10.1016/j.biomaterials.2003.11.033
  77. Cheng G, Xue H, Zhang Z, Chen S, Jiang S. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angew Chem Int Ed Engl 2008;47:8831-4. https://doi.org/10.1002/anie.200803570
  78. Al-Deyab SS, El-Newehy MH, Nirmala R, Abdel-Megeed A, Kim HY. Preparation of nylon-6/chitosan composites by nanospider technology and their use as candidate for antibacterial agents. Korean J Chem Eng 2013;30:422-8. https://doi.org/10.1007/s11814-012-0154-5
  79. Bilek F, Sulovska K, Lehocky M, Saha P, Humpolicek P, Mozetic M, et al. Preparation of active antibacterial LDPE surface through multistep physicochemical approach II: graft type effect on antibacterial properties. Colloids Surf B Biointerfaces 2013;102:842-8. https://doi.org/10.1016/j.colsurfb.2012.08.026
  80. Zhao C, Li X, Li L, Cheng G, Gong X, Zheng J. Dual functionality of antimicrobial and antifouling of poly(N-hydroxyethylacrylamide)/ salicylate hydrogels. Langmuir 2013;29:1517-24. https://doi.org/10.1021/la304511s
  81. Liu Y, Kim HI. Characterization and antibacterial properties of genipin-crosslinked chitosan/poly(ethylene glycol)/ZnO/Ag nanocomposites. Carbohydrate Polymers 2012;89:111-6. https://doi.org/10.1016/j.carbpol.2012.02.058
  82. Tsai MT, Chang YY, Huang HL, Hsu JT, Chen YC, Wu AY. Characterization and antibacterial performance of bioactive Ti-Zn-O coatings deposited on titanium implants. Thin Solid Films 2013;528:143-50. https://doi.org/10.1016/j.tsf.2012.05.093
  83. Ketonis C, Parvizi J, Jones LC. Evolving strategies to prevent implant-associated infections. J Am Acad Orthop Surg 2012;20:478-80. https://doi.org/10.5435/JAAOS-20-07-478
  84. Marsich E, Travan A, Donati I, Turco G, Kulkova J, Moritz N, et al. Biological responses of silver-coated thermosets: an in vitro and in vivo study. Acta Biomater 2013;9:5088-99. https://doi.org/10.1016/j.actbio.2012.10.002
  85. Busscher HJ, Rinastiti M, Siswomihardjo W, van der Mei HC. Biofilm formation on dental restorative and implant materials. J Dent Res 2010;89:657-65. https://doi.org/10.1177/0022034510368644
  86. Li L, Finnegan MB, Ozkan S, Kim Y, Lillehoj PB, Ho CM, et al. In vitro study of biofilm formation and effectiveness of antimicrobial treatment on various dental material surfaces. Mol Oral Microbiol 2010;25:384-90. https://doi.org/10.1111/j.2041-1014.2010.00586.x
  87. Vasilev K, Cook J, Griesser HJ. Antibacterial surfaces for biomedical devices. Expert Rev Med Devices 2009;6:553-67. https://doi.org/10.1586/erd.09.36
  88. Li Z, Lee D, Sheng X, Cohen RE, Rubner MF. Two-level antibacterial coating with both release-killing and contact-killing capabilities. Langmuir 2006;22:9820-3. https://doi.org/10.1021/la0622166
  89. Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. J Control Release 2008;130:202-15. https://doi.org/10.1016/j.jconrel.2008.05.020
  90. Langer R. Polymer-controlled drug delivery systems. Acc Chem Res 1993;26:537-42. https://doi.org/10.1021/ar00034a004
  91. Potara M, Jakab E, Damert A, Popescu O, Canpean V, Astilean S. Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus. Nanotechnology 2011;22:135101. https://doi.org/10.1088/0957-4484/22/13/135101
  92. White RJ. An historical overview of the use of silver in wound management. Br J Community Nurs 2001;6(Silver Suppl 1):3-8.
  93. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009;27:76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
  94. Lee D, Cohen RE, Rubner MF. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 2005;21:9651-9. https://doi.org/10.1021/la0513306
  95. Nair LS, Laurencin CT. Silver nanoparticles: synthesis and therapeutic applications. J Biomed Nanotechnol 2007;3:301-16. https://doi.org/10.1166/jbn.2007.041
  96. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 2006;110:16248-53. https://doi.org/10.1021/jp063826h
  97. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005;16:2346-53. https://doi.org/10.1088/0957-4484/16/10/059
  98. Eom HJ, Choi J. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 2010;44:8337-42. https://doi.org/10.1021/es1020668
  99. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 2010;85:1115-22. https://doi.org/10.1007/s00253-009-2159-5
  100. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 2007;73:1712-20. https://doi.org/10.1128/AEM.02218-06
  101. de Lima R, Seabra AB, Duran N. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. Appl Toxicol 2012;32:867-79. https://doi.org/10.1002/jat.2780

Cited by

  1. Increased Mesenchymal Stem Cell Response and Decreased Staphylococcus aureus Adhesion on Titania Nanotubes without Pharmaceuticals vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/172898
  2. Antibacterial Effects and Biocompatibility of Titania Nanotubes with Octenidine Dihydrochloride/Poly(lactic-co-glycolic acid) vol.2015, pp.None, 2013, https://doi.org/10.1155/2015/836939
  3. Biocompatibility and Anti-Microbiological Activity Characterization of Novel Coatings for Dental Implants: A Primer for Non-Biologists vol.3, pp.None, 2016, https://doi.org/10.3389/fmats.2016.00040
  4. Systemic administration of omeprazole interferes with bone healing and implant osseointegration: an in vivo study on rat tibiae vol.43, pp.2, 2016, https://doi.org/10.1111/jcpe.12506
  5. Propranolol enhances bone healing and implant osseointegration in rats tibiae vol.43, pp.12, 2013, https://doi.org/10.1111/jcpe.12632
  6. Influence of the Microstructure and Silver Content on Degradation, Cytocompatibility, and Antibacterial Properties of Magnesium-Silver Alloys In Vitro vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/8091265
  7. Core/shell nanocomposite for biomedicine and environmental safety vol.213, pp.None, 2013, https://doi.org/10.1088/1757-899x/213/1/012017
  8. Comparison effects of titanium dioxide nanoparticles on immune cells in adaptive and innate immune system vol.11, pp.7, 2013, https://doi.org/10.1049/iet-nbt.2016.0205
  9. The Impact of Incorporating Antimicrobials into Implant Surfaces vol.97, pp.1, 2018, https://doi.org/10.1177/0022034517731768
  10. An In Vitro Model for Candida albicans–Streptococcus gordonii Biofilms on Titanium Surfaces vol.4, pp.2, 2013, https://doi.org/10.3390/jof4020066
  11. The impact of proton pump inhibitors on bone regeneration and implant osseointegration vol.51, pp.3, 2013, https://doi.org/10.1080/03602532.2019.1610767
  12. Surface modification of Ti6Al4V alloy for implants by anodization and electrodeposition vol.6, pp.5, 2013, https://doi.org/10.3934/matersci.2019.5.713
  13. In vivo hydroxyapatite scaffold performance in infected bone defects vol.108, pp.3, 2013, https://doi.org/10.1002/jbm.b.34466
  14. Controlling cell viability and bacterial attachment through fabricating extracellular matrix-like micro/nanostructured surface on titanium implant vol.15, pp.3, 2020, https://doi.org/10.1088/1748-605x/ab70ee
  15. Antimicrobial Potential of Strontium Hydroxide on Bacteria Associated with Peri-Implantitis vol.10, pp.2, 2013, https://doi.org/10.3390/antibiotics10020150
  16. Infections @ Trauma/Orthopedic Implants: Recent Advances on Materials, Methods, and Microbes-A Mini-Review vol.14, pp.19, 2013, https://doi.org/10.3390/ma14195834