DOI QR코드

DOI QR Code

Scutellaria baicalensis Extracts as Natural Inhibitors of Food Browning

천연 갈변저해제로서 황금 추출물의 효소적 갈변 저해 효과

  • Park, Miji (Dept. of Health Functional Materials, Duksung Women's University) ;
  • Chang, Min-Sun (Dept. of Health Functional Materials, Duksung Women's University) ;
  • Jeong, Moon-Cheol (Korea Food Research Institute) ;
  • Kim, Gun-Hee (Dept. of Health Functional Materials, Duksung Women's University)
  • 박미지 (덕성여자대학교 건강기능신소재학과) ;
  • 장민선 (덕성여자대학교 건강기능신소재학과) ;
  • 정문철 (한국식품연구원) ;
  • 김건희 (덕성여자대학교 건강기능신소재학과)
  • Received : 2013.01.29
  • Accepted : 2013.02.22
  • Published : 2013.05.31

Abstract

This study was designed to develop natural browning inhibitors. The anti-browning effects of distilled water (SBD) and 80% ethanol extracts (SBE) of Scutellaria baicalensis Georgi in apple slices were investigated by L and ${\Delta}E$ values. Both SBD and SBE were effective in reducing the browning of apple slices and were successively fractionated into chloroform ($CHCl_3$), ethyl acetate (EtOAc), and water ($H_2O$) fractions. These extracts were measured for total phenolic content, flavonoid content, anti-oxidative activity (through free radical scavenging activity and the FRAP assay), ferrous ion chelation, and the inhibition of PPO (polyphenol oxidase) activity. Overall, fractions of SBE were better than fractions of SBD in all measurements. The highest total phenolic and flavonoid content were measured in the EtOAc and $CHCl_3$ fractions of SBE. EtOAc and $CHCl_3$ fractions also exhibited the highest anti-oxidative activities (in DPPH and ABTS free radical scavenging and the FRAP assay). Unusually, the highest ferrous ion chelating capacity was found in the $H_2O$ fraction of SBD, but the other fractions showed more than triple the ascorbic acid already in use. Also, $CHCl_3$ fractions showed a stronger inhibition of PPO activity than ascorbic acid. All of these results suggest that EtOAc and $CHCl_3$ fractions from Scutellaria baicalensis can be used as natural anti-browning agents.

천연 갈변저해 소재 발굴을 위해 황금을 열수와 EtOH로 추출한 후, 각각의 추출물에 사과 슬라이스를 침지하여 외관의 변화를 관찰한 결과 황금의 열수와 에탄올 추출물이 사과의 갈변억제에 효과적이었다. 이에 열수와 EtOH 추출물을 각각 상법에 따라 분획하여 $CHCl_3$, EtOAc, $H_2O$ 분획물로 총 6가지 분획물을 얻었다. 이 분획물에 대한 총 페놀과 플라보노이드 함량 및 라디칼 소거능과 환원력 측정, 금속이온 chelating 등을 통하여 항산화 효과와 PPO(polyphenol oxidase) 저해 활성을 측정하였다. 대체적으로 EtOH 추출의 분획물이 열수 추출의 분획물보다 페놀과 플라보노이드 함량 및 항산화 활성이 뛰어났다. 총 페놀의 경우 EtOAc 분획물에서, 플라보노이드의 경우 $CHCl_3$ 분획물에서 가장 높은 함량을 나타내었다. DPPH와 ABTS radical 소거능, FRAP assay 결과 EtOAc 및 $CHCl_3$ 분획물에서 높은 항산화능을 보여 총 페놀 및 플라보노이드 함량과 유사한 경향을 나타내었다. 금속이온 chelating 활성은 특이적으로 $H_2O$ 분획물에서 높은 활성이 나타났으나 다른 분획물들 또한 ascorbic acid에 비해 약 3배 이상의 우수한 활성을 나타냈다. PPO 저해 활성의 경우 $CHCl_3$ 분획물에서 높은 저해활성을 나타내어 다른 항산화 측정 결과와 유사한 경향을 보였으며, ascorbic acid에 비해 우수한 PPO 저해 활성을 보였다. 따라서 황금의 EtOAc 및 $CHCl_3$ 분획물은 우수한 항산화 및 PPO 저해 활성으로 인해 갈변저해제로서 효과적이라 판단된다.

Keywords

References

  1. Kim YL, Kim HC, Kuk YB, Park SJ, Park YK, Park JH, Seo BI, Seo YB, Song HJ, Lee, YJ, Lee YC, Lee JH, Im KH, Cho SI, Jeong JG, Joo YS, Choi HY. 2004. Herbal medicine. Young Lim Co., Seoul, Korea. p 216-217.
  2. Shang X, He X, He X, Li M, Zhang R, Fan P, Zhang Q, Jia Z. 2010. The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol 128: 279-313. https://doi.org/10.1016/j.jep.2010.01.006
  3. Kim SI, Do WS, Kim KS. 1999. Antioxidant effects of SR (Scutellariae Radix) aqua-acupuncture extract solution in vitro. J Korean Acupuncture & Moxibustion Soc 16: 497-509.
  4. Himeji M, Ohtsuki T, Fukazawa H, Tanaka M, Yazaki S, Ui S, Nishio K, Yamamoto H, Tasaka K, Mimura A. 2007. Difference of growth-inhibitory effect of Scutellaria baicalensis- producing flavonoid wogonin among human cancer cells and normal diploid cell. Cancer Lett 245: 269-274. https://doi.org/10.1016/j.canlet.2006.01.011
  5. Rageart P, Verbeke W, Devlieghere F, Debevere J. 2004. Consumer perception and choice of minimally processed vegetables and packaged fruits. Food Quality Preference 15: 259-270. https://doi.org/10.1016/S0950-3293(03)00066-1
  6. Sapers GM, Miller RL. 1992. Enzymatic browning control in potato with ascorbic acid-2-phosphates. J Food Sci 57:1132-1135. https://doi.org/10.1111/j.1365-2621.1992.tb11281.x
  7. Braaksma A, Schaap DJ, Schipper CMA. 1999. Time of harvest determines the postharvest quality of the common mushroom Agaricus bisporus. Postharvest Biol Technol 16: 195-198. https://doi.org/10.1016/S0925-5214(99)00019-8
  8. Sapers GM, Miller RL, Miller FC, Cooke PH, Chio SW. 1994. Enzymatic browning control in minimally processed mushrooms. J Food Sci 59: 1042-1047. https://doi.org/10.1111/j.1365-2621.1994.tb08185.x
  9. Martinez MV, Whitaker JR. 1995. The biochemistry and control of enzymatic browning. Trends Food Sci Technol 6: 195-200. https://doi.org/10.1016/S0924-2244(00)89054-8
  10. Fallik E. 2004. Prestorage hot water treatments (immersion, rinsing and brushing). Postharvest Biol Technol 32: 125-134. https://doi.org/10.1016/j.postharvbio.2003.10.005
  11. Lee GC, Ahn SC. 1997. Inhibition effect of several cereal extracts on enzymatic browning. Korean J Soc Food Sci 13: 390-395.
  12. Jung SW, Lee NK, Kim SJ, Han DS. 1995. Screening of tyrosinase inhibitors from plants. Korean J Food Sci Techol 27: 891-896.
  13. Kim JK, Cha WS, Park JH, Oh SL, Cho YJ, Chun SS, Choi C. 1997. Inhibition effect against tyrosinase of condensed tannins from Korean green tea. Korean J Food Sci Technol 28: 173-177.
  14. Chang MS, Park M, Jeong MC, Kim D, Kim GH. 2011. Antioxidative and antibrowning effects of Taraxacum platycarpum and Chrysanthemum indicum extracts as natural antibrowning agents. Korean J Food Preserv 18: 584-589. https://doi.org/10.11002/kjfp.2011.18.4.584
  15. Richard-Forget FC, Goupy PM, Nicolas JJ. 1992. Cysteine as an inhibitor of enzymatic browning. 2. Kinetic studies. J Agric Food Chem 40: 2108-2113. https://doi.org/10.1021/jf00023a014
  16. Lin JY, Tang CY. 2007. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem 101: 140-147. https://doi.org/10.1016/j.foodchem.2006.01.014
  17. Ramos A, Visozo A, Piloto J, Garcia A, Rodriguez CA, Rivero R. 2003. Screening of antimutagenicity via antioxidant activity in Cuban medicinal plants. J Ethnopharmacol 87: 241-246. https://doi.org/10.1016/S0378-8741(03)00156-9
  18. Woo KS, Seo MC, Kang JR, Ko JY, Song SB, Lee JS, Oh BG, Park GD, Lee YH, Nam MH, Jeong HS. 2010. Antioxidant compounds and antioxidant activities of the methanolic extracts from milling fractions of sorghum (Sorghum bicolor L. Moench). J Korean Soc Food Sci Nutr 39: 1695-1699 . https://doi.org/10.3746/jkfn.2010.39.11.1695
  19. Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as measure of "antioxidant power": the FRAP assay. Anal Biochem 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  20. Dinis TC, Maderia VM, Almeida LM. 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315:161-169. https://doi.org/10.1006/abbi.1994.1485
  21. Dennis D, Miller JW. 1998. Enzymatic browning. In Kinetics of Tyrosinase. Chapman & Hall, Inc., New York, NY, USA. p 44-49.
  22. Weller A, Sims CA, Matthews RF, Bates RP, Brecht JK. 1997. Browning susceptibility and changes in composition during storage of carambola slices. J Food Sci 62: 256-260. https://doi.org/10.1111/j.1365-2621.1997.tb03980.x
  23. Jeong CH, Choi SG, Heo HJ. 2008. Analysis of nutritional components and evaluation of functional activities of Sasa borealis leaf tea. Korean J Food Sci Technol 40: 586-592.
  24. Rice-Evans C, Miller N, Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci 2: 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  25. Hyun MR, Lee YS, Park YH. 2011. Antioxidative activity and flavonoid content of Chrysanthemum zawadskii flowers. Kor J Hort Sci Technol 29: 68-73.
  26. Cai Y, Luo Q, Sun M, Corke H. 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74: 2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047
  27. Chung HJ, Jeon IS. 2011. Antioxidative activities of methanol extracts from different parts of Chrysanthemum zawadskii. Korean J Food Preserv 18: 739-745. https://doi.org/10.11002/kjfp.2011.18.5.739
  28. Kim KB, Yoo KH, Park HY, Jeong JM. 2006. Anti-oxidative activities of commercial edible plant extracts distributed in Korea. J Korean Soc Appl Biol Chem 49: 328-333.
  29. Park CS, Kim DH. 2008. Biological activities of extracts from Scutellaria baicalensis, Zizyphus jujuba and Atractylodes macrocephala. Kor J Herbology 23: 41-51.
  30. Kim YH, Paek JY, Kwon HJ, Lee JW, Yoon KH, Han MD. 2009. Antioxidant and antibacterial activities of ethyl acetate extract from Scutellaria baicalensis. Korean J Food & Nutr 22: 367-376.
  31. Ooi KL, Muhammad TS, Tan ML, Sulaiman SF. 2011. Cytotoxic, apoptotic and anti-${\alpha}$-glucosidase activities of 3,4-di-O-caffeoyl quinic acid, an antioxidant isolated from the polyphenolic-rich extract of Elephantopus mollis Kunth. J Ethnopharmacol 135: 685-695. https://doi.org/10.1016/j.jep.2011.04.001
  32. Ebrahimzadeh MA, Pourmorad F, Bekhradnia AR. 2008. Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. Afr J Biotechnol 7: 3188-3192.
  33. Wong JY, Chye FY. 2009. Antioxidant properties of selected tropical wild edible mushrooms. J Food Compos Anal 22: 269-277. https://doi.org/10.1016/j.jfca.2008.11.021
  34. Peter MAT, David AB. 2008. Biochemical bases of appearance and texture changes in fresh-sut fruit and vegetables. Postharvest Bio Tec 48: 1-4 https://doi.org/10.1016/j.postharvbio.2007.09.004
  35. Komori K, Yatagai K, Tatsuma T. 2004. Activity regulation of tyrosinase by using photoisomerizable inhibitors. J Biotechnol 108: 11-16. https://doi.org/10.1016/j.jbiotec.2003.10.010
  36. Seo SY. 2001. Screening of tyrosinase inhibitors from oriental herbs. Korean J Plant Res 14: 32-37.

Cited by

  1. Use of oriental melon peel extracts to maintain the quality of Agaricus bisporus during its storage vol.21, pp.4, 2014, https://doi.org/10.11002/kjfp.2014.21.4.473
  2. Quality improvement of high temperature-heated shrimp via pretreatment vol.48, pp.5, 2016, https://doi.org/10.9721/KJFST.2016.48.5.461
  3. Physicochemical characteristics and antioxidant activities of solvent fractions from ethanol extract of Wasabia koreana Nakai leaf vol.26, pp.5, 2013, https://doi.org/10.11002/kjfp.2019.26.5.586
  4. 갈변방지제 처리에 따른 슬라이스 유자의 품질 변화 vol.33, pp.4, 2013, https://doi.org/10.9799/ksfan.2020.33.4.419
  5. Anti-Browning Effect of Plum Seed Extracts from Different Cultivars vol.50, pp.4, 2021, https://doi.org/10.3746/jkfn.2021.50.4.362