Abstract
Each field of modern society, industrialization and the development of science and technology are rapidly changing. However, as a side effect of rapid social change has caused various problems. Crime of the side effects of rapid social change is a big problem. In this paper, a model for predicting crime and Markov chains applied to the crime, predictive modeling is proposed. Markov chain modeling of the existing one with the overall status of the case determined the probability of predicting the future, but this paper predict the events to increase the probability of occurrence probability of the prediction and the recent state of the entire state was divided by the probability of the prediction. And the whole state and the probability of the prediction and the recent state by applying the average of the prediction probability and the probability of the prediction model were implemented. Data was applied to the incidence of crime. As a result, the entire state applies only when the probability of the prediction than the entire state and the last state is calculated by dividing the probability value. And that means when applied to predict the probability, close to the crime was concluded that prediction.
현대 사회의 각 분야는 산업화와 과학기술의 발전으로 빠르게 변화한다. 그러나 빠른 사회 변화의 부작용으로 다양한 문제가 발생하고 있는데, 그 중 범죄는 큰 문제이다. 본 논문은 범죄를 예측하기 위한 모델로 마코프 체인을 적용한 범죄 예측 모델링을 제안한다. 기존의 마코프 체인 모델링은 한 사건의 전체 상태만으로 미래 예측 확률을 구하였으나, 본 논문은 사건 발생 확률 예측을 높이기 위해 전체 상태 예측 확률과 최근 상태 예측 확률로 나누었다. 그리고 전체 상태 예측 확률과 최근 상태 예측 확률의 평균값을 적용하여 미래 예측 확률 모델링으로 구현했다. 데이터는 범죄 발생 건수를 적용하였다. 그 결과 전체 상태만을 대상으로 예측확률을 적용 하였을 때 보다, 전체 상태와 최근상태로 나누어 확률 값을 구한 후, 그 평균값을 예측 확률로 적용하였을 때, 범죄 발생 예측에 근접하다는 결론을 얻었다.