DOI QR코드

DOI QR Code

An Empirical Study on Explosive Volatility Test with Possibly Nonstationary GARCH(1, 1) Models

  • Lee, Sangyeol (Department of Statistics, Seoul National University) ;
  • Noh, Jungsik (Department of Statistics, Seoul National University)
  • Received : 2013.03.26
  • Accepted : 2013.05.15
  • Published : 2013.05.31

Abstract

In this paper, we implement an empirical study to test whether the time series of daily returns in stock and Won/USD exchange markets is strictly stationary or explosive. The results indicate that only a few series show nonstationary volatility when dramatic events erupted; in addition, this nonstationary behavior occurs more often in the Won/USD exchange market than in the stock market.

Keywords

References

  1. Berkes, I., Horvath, L. and Kokoszka, P. (2003). GARCH processes: Structure and estimation, Bernoulli, 9, 201-227. https://doi.org/10.3150/bj/1068128975
  2. Billingsley, P. (1995). Probability and Measure, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons Inc., New York, 3rd edn, A Wiley-Interscience Publication.
  3. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
  4. Bougerol, P. and Picard, N. (1992). Stationarity of GARCH processes and of some nonnegative time series, Journal of Econometrics, 52, 115-127. https://doi.org/10.1016/0304-4076(92)90067-2
  5. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1007. https://doi.org/10.2307/1912773
  6. Francq, C. and Zakoian, J.-M. (2004). Maximum likelihood estimation of pure GARCH and ARMAGARCH processes, Bernoulli, 10, 605-637. https://doi.org/10.3150/bj/1093265632
  7. Francq, C. and Zakoian, J.-M. (2012). Strict stationarity testing and estimation of explosive and stationary generalized autoregressive conditional heteroscedasticity models, Econometrica, 80, 821-861. https://doi.org/10.3982/ECTA9405
  8. Jensen, S. T. and Rahbek, A. (2004). Asymptotic inference for nonstationary GARCH, Econometric Theory, 20, 1203-1226.
  9. Kingman, J. F. C. (1973). Subadditive ergodic theory, The Annals of Probability, 1, 883-899. https://doi.org/10.1214/aop/1176996798
  10. Lee, S.-W. and Hansen, B. E. (1994). Asymptotic theory for the GARCH(1, 1) quasi-maximum likelihood estimator, Econometric Theory, 10, 29-52. https://doi.org/10.1017/S0266466600008215
  11. Lee, S. and Lee, T. (2012). Inference for Box-Cox transformed threshold garch models with nuisance parameters, Scandinavian Journal of Statistics, 39, 568-589. https://doi.org/10.1111/j.1467-9469.2012.00805.x
  12. Li, W. K., Ling, S. and McAleer, M. (2002). Recent theoretical results for time series models with GARCH errors, Journal of Economic Surveys, 16, 245-269. https://doi.org/10.1111/1467-6419.00169
  13. Lumsdaine, R. L. (1996). Consistency and asymptotic normality of the quasi-maximum likelihood estimator in IGARCH(1, 1) and covariance stationary GARCH(1, 1) models, Econometrica, 64, 575-596. https://doi.org/10.2307/2171862
  14. Medeiros, M. C. and Veiga, A. (2009). Modeling multiple regimes in financial volatility with a flexible coefficient GARCH(1,1) model, Econometric Theory, 25, 117-161. https://doi.org/10.1017/S026646660809004X
  15. Nelson, D. B. (1990). Stationarity and persistence in the GARCH(1, 1) model, Econometric Theory, 6, 318-334. https://doi.org/10.1017/S0266466600005296
  16. Pantula, S. G. (1988). Estimation of autoregressive models with ARCH errors, Sankhya B, 50, 119-138.
  17. Straumann, D. and Mikosch, T. (2006). Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach, The Annals of Statistics, 34, 2449-2495. https://doi.org/10.1214/009053606000000803
  18. Weiss, A. A. (1986). Asymptotic theory for ARCH models: Estimation and testing, Econometric Theory, 2, 107-131. https://doi.org/10.1017/S0266466600011397

Cited by

  1. Skewness of Gaussian Mixture Absolute Value GARCH(1, 1) Model vol.20, pp.5, 2013, https://doi.org/10.5351/CSAM.2013.20.5.395
  2. Exploratory Data Analysis for Korean Stock Data with Recurrence Plots vol.26, pp.5, 2013, https://doi.org/10.5351/KJAS.2013.26.5.807
  3. A generalized regime-switching integer-valued GARCH(1, 1) model and its volatility forecasting vol.25, pp.1, 2018, https://doi.org/10.29220/CSAM.2018.25.1.029