DOI QR코드

DOI QR Code

An Experimental Study on Compressive Loading Capacity of Precast Concrete Truss System

프리캐스트 콘크리트 트러스 시스템의 압축 내하력 실험 연구

  • 한만엽 (아주대학교 건설시스템공학과) ;
  • 전세진 (아주대학교 건설시스템공학과)
  • Received : 2012.08.21
  • Accepted : 2013.03.07
  • Published : 2013.05.30

Abstract

In a large scale of excavation for the foundation of large-sized structures and underground structures, a considerable amount of earth pressure can occur. Steel beams that have been used to form a temporary structure to support earth pressure may be less economical and less efficient in resisting the high earth pressure. To cope with this problem, PCT(Precast Concrete Truss) system has been devised and investigated both experimentally and analytically. A proper connection method between the concrete truss members was proposed to accommodate fast assembly and disassembly. Full-scale test of PCT system was performed to verify the load-carrying capacity of the PCT system including the connections. The test results were compared with those of structural analysis. The test specimen which corresponds to PCT strut attained the ultimate load without buckling, but the detail of connector members needs to be improved. It is expected that precast concrete truss members can be efficiently incorporated into a temporary structure for deep and large excavation by replacing conventional steel beams.

대형 구조물의 기초나 지중 구조물 시공을 위한 대규모 굴착 시 매우 큰 토압이 발생할 수 있다. 이러한 큰 토압을 지지하기 위해 기존에 사용되어 온 강재 버팀보를 적용할 경우 경제성 및 효율성이 저하될 우려가 있다. 이러한 점을 개선하기 위해 PCT(Precast Concrete Truss) 시스템을 고안하였으며 이에 대한 실험 및 해석적 연구를 수행하였다. 콘크리트 트러스 부재의 조립 및 해체를 용이하게 하기 위해 적절한 연결방법이 제안되었다. 이러한 연결부를 포함한 PCT 시스템의 내하력을 검증하기 위해 실대형 실험이 실시되었으며, 실험결과는 구조해석결과와도 비교되었다. PCT 버팀보를 모사한 시험체는 극한하중 도달 시까지 좌굴이 발생하지 않았으나, 연결 부재 상세에 대한 일부 개선점이 도출되었다. PCT 시스템은 대규모 굴착 시 기존의 강재 버팀보를 대체하는 가설구조물로서 효율적으로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Chajes, A. (1974) Principles of structural stability theory, Prentice-Hall.
  2. Cho, J.-Y., Lee, Y.-H., Kim, D.-H., and Park, J.-H. (2011). "Development of precast hollow concrete columns with nonshrink mortar grouting type splice sleeve." Journal of the Korean Society of Civil Engineers, Vol. 31, No. 3A, pp. 215-225 (in Korean).
  3. Chung, C.-H. and Hyun, B.-H. (2007). "Continuity of PSC composite bridge with precast decks." Journal of the Korean Society of Civil Engineers, Vol. 27, No. 4A, pp. 561-568 (in Korean).
  4. Han, M.-Y., Jin, K.-S., and Kang, S.-H. (2009) Research report on development of construction method of prefabricated precast concrete temporary structures, Civil Engineering Technology Research Center, Ajou University (in Korean).
  5. Han, M.-Y., Jin, K.-S., and Kang, S.-H., and Kim, S.-B. (2007). "Comparison and investigation of field test and structural analysis for innovative prestressed support(IPS) system." Journal of the Korean Society of Civil Engineers, Vol. 27, No. 1C, pp. 11-20 (in Korean).
  6. Han, M.-Y., Kim, J.-H., Kang, S.-H., Jin, K.-S., Jeon, Y.-S., and Cho, B.-K. (2008). "An experimental study on compressive loading capacity of PCT system." Proceedings of the Korea Concrete Institute, KCI, Vol. 20, No. 2, pp. 41-44 (in Korean).
  7. Han, S.-H., Hong, K.-N., and Lee, J.-B. (2009). "An experimental study on uniaxial compressive behavior of RC circular columns laterally confined with prestressing aramid fiber strap." Journal of the Korea Concrete Institute, Vol. 21, No. 2, pp. 159-168 (in Korean). https://doi.org/10.4334/JKCI.2009.21.2.159
  8. Hong, K.-N., Han, S.-H., Yoon, S.-J., and Seo, S.-Y. (2006) "Uniaxial compressive test and confined model on RC columns using high-strength materials." Magazine of the Korea Concrete Institute, Vol. 18, No. 5, KCI, pp. 65-72 (in Korean). https://doi.org/10.4334/JKCI.2006.18.1.065
  9. Kim, S.-B., Han, M.-Y., Kim, M.-Y., and Jung, K.-H. (2006). "Design of building excavation plane in Innovative Prestressed Scaffolding (IPS) system." Journal of the Korean Society of Civil Engineers, Vol. 26, No. 1A, pp. 163-171 (in Korean).
  10. Korea Concrete Institute (2012). Structural concrete design code (in Korean).
  11. Korea Expressway Corporation (2005). Detailed design code of temporary earth retaining structures (in Korean).
  12. Lee, C.-H., Chin, W.-J., Choi, E.-S., and Kim, Y.-J. (2011). "An experimental study on the joints in ultra high performance precast concrete segmental bridges." Journal of the Korea Concrete Institute, Vol. 23, No. 2, pp. 235-244 (in Korean). https://doi.org/10.4334/JKCI.2011.23.2.235
  13. MIDAS Information Technology Co., Ltd. (2012). http://www. midasit.com.
  14. Park, J.-Y., Yang, W.-J., Yi, W.-H., and Oh, S.-H. (2008). "An experimental study on the axial strength of centrifugally formed shell PC columns." Proceedings of the Korea Concrete Institute, KCI, Vol. 20, No. 2, pp. 37-40 (in Korean).
  15. Shin, H.-M. and Lee, J.-H. (2013). Reinforced concrete, 11th ed., Dongmyungsa (in Korean).
  16. Timoshenko, S. P. and Gere, J. M. (1961) Theory of Elastic Stability, McGraw-Hill.
  17. Won, D.-H., Lee, D.-J., Kim, S.-J., and Kang, Y.-J. (2011). "A study on behavior characteristics of precast coping part under axial load." Journal of the Korea Concrete Institute, Vol. 23, No. 3, pp. 281-287 (in Korean). https://doi.org/10.4334/JKCI.2011.23.3.281