DOI QR코드

DOI QR Code

초탄성 형상기억합금을 활용한 좌굴방지 가새프레임 구조물의 지진거동 및 성능평가

Seismic Behavior and Performance Evaluation of Uckling-restrained Braced Frames (BRBFs) using Superelastic Shape Memory Alloy (SMA) Bracing Systems

  • 허종완 (인천대학교 도시환경공학부)
  • Hu, Jong Wan (Department of Civil and Environmental Engineering, University of Incheon)
  • 투고 : 2013.03.27
  • 심사 : 2013.04.23
  • 발행 : 2013.05.30

초록

최근에는 초탄성 형상기억합금을 구조물 일부에 설치하여 지진과 같은 외부 충격하중으로 인해 발생되는 영구적인 소성 변형을 줄이고 자동치유가 가능한 변위제어 시스템을 개발하는 연구가 활발하게 진행되고 있다. 초탄성 형상 기억합금은 상당량의 변위를 가하더라도 별도의 열처리 없이도 상온에서 단지 하중만을 제거하여도 원형으로 복원이 가능한 독특한 합성 금속재료이다. 뼈대 구조물에서 변형이 집중이 되는 부위에 기존에 사용된 강재를 대신하여 초탄성 형상기억합금을 사용한다면 시스템의 복원 효과를 극대화 시킬 수 있다. 따라서 본 연구는 내진성능이 우수한 좌굴방지 가새프레임에 초탄성 형상기억합금 소재를 접목시킨 새로운 구조 시스템을 제안하고 자 한다. 본 연구에서 제안된 구조시스템의 성능을 검증하기 위하여 현재 사용되는 설계코드를 참고하여 6층의 가새프레임 빌딩을 설계를 하고 2차원적인 유한요소 프레임 모델에 각각의 지진 위험도 레벨의 가속도 데이터를 사용하여 비선형 동적 해석을 실시하였다. 해석결과를 바탕으로 초탄성 형상기억합금 가새시스템을 사용한 프레임 구조물과 기존의 가새시스템을 성능적인 측면에서 서로 비교하였다. 해석결과는 지진하중 이후에 초탄성 형상기억합금 가새시스템은 구조물에 잔류 처짐을 감소하는데 매우 효율적임을 보여주고 있다.

The researches have recently progressed toward the use of the superelastic shape memory alloys (SMAs) to develop new smart control systems that reduce permanent deformation occurring due to severe earthquake events and that automatically recover original configuration. The superelastic SMA materials are unique metallic alloys that can return to undeformed shape without additional heat treatments only after the removal of applied loads. Once the superelastic SMA materials are thus installed at the place where large deformations are likely to intensively occur, the structural system can make the best use of recentering capabilities. Therefore, this study is intended to propose new buckling-restrained braced frames (BRBFs) with superelastic SMA bracing systems. In order to verify the performance of such bracing systems, 6-story braced frame buildings were designed in accordance with the current design specifications and then nonlinear dynamic analyses were performed at 2D frame model by using seismic hazard ground motions. Based on the analysis results, BRBFs with innovative SMA bracing systems are compared to those with conventional steel bracing systems in terms of peak and residual inter-story drifts. Finally, the analysis results show that new SMA bracing systems are very effective to reduce the residual inter-story drifts.

키워드

참고문헌

  1. American Institute of Steel Construction (AISC) (2001). Manual of steel construction: Load and Resistance Factor Design (LRFD), 3rd edition, Chicago (IL) USA.
  2. American Society of Civil Engineers (ASCE) (2005). Minimum design loads for buildings and other structures, ASCE/SEI No. 7-05, Reston VA USA.
  3. Auricchio, F., Sacco, E. (1997). "A one-dimensional model for superelastic shape-memory alloys with different properties between martensite and austenite." Int. J. Non-Linear Mech., Vol. 32, No. 6, pp. 1101-1114. https://doi.org/10.1016/S0020-7462(96)00130-8
  4. Black. C., Makris. N., Aiken. I. (2002). Component testing, stability analysis and characterization of buckling-restrained braces, Report No. PEER-2002/08, Pacific Earthquake Engineering Research Center University of California Berkeley CA USA.
  5. DesRoches. R., Delemont. M. (2002). "Seismic retrofit of simply supported bridges using shape memory alloys." Eng. Struct., Vol. 24, No. 3, pp. 325-332. https://doi.org/10.1016/S0141-0296(01)00098-0
  6. DesRoches. R., Delemont. M. (2002). "Seismic retrofit of simply supported bridges using shape memory alloys." Eng. Struct., Vol. 24, No. 3, pp. 325-332. https://doi.org/10.1016/S0141-0296(01)00098-0
  7. Dolce. M., Cardone. D. (2001). "Mechanical behaviour of shape memory alloys for seismic applications: 1. Martensite and austenite NiTi bars subjected to torsion." Int. J. Mech. Sci., Vol. 43, No. 11, pp. 2631-2656. https://doi.org/10.1016/S0020-7403(01)00049-2
  8. Hu, J. W. (2008). Seismic performance evaluations and analyses for composite moment frames with smart SMA PR-CFT connections, Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, USA.
  9. Hu, J. W., Choi, E., Leon, R. T. (2011). "Design, analysis, and application of innovative composite PR connections between steel beams and CFT columns Smart Mater." Struct., Vol. 20, No. 2, DOI 10.1088/0964-1726/20/2/025019.
  10. Hu, J. W., Kang, Y. S., Choi, D. H., Park, T. (2010). "Seismic design, performance, and behavior of composite-moment frames with steel beam-to-concrete filled tube column connections." KSSC Int. J. Steel Struct., Vol. 10, No. 2, pp. 177-91. https://doi.org/10.1007/BF03215829
  11. Hu, J. W., Leon, R. T. (2011). "Analyses and evaluations for composite-moment frames with SMA PR-CFT connections." Nonlin. Dyna., Vol. 65, No. 4, DOI 10.1007/s11071-010-9903-3.
  12. Inoue, K., Sawaisumi, S., Higashibata, Y. (2001). "Stiffening requirements for unbonded braces encased in concrete panels." ASCE J. Struct. Eng., Vol. 127, No. 6, pp. 712-719. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(712)
  13. Kim, J., Park, J., Kim, S. (2009). "Seismic behavior factors of buckling-restrained braced frames." Struct. Eng. Mech., Vol. 33, No. 3, pp. 261-284. https://doi.org/10.12989/sem.2009.33.3.261
  14. Mazzoni, S., Mckenna, F., Fenves, G. L. (2006). OpenSEES command language manual v. 1.7.3. Department of Civil Environmental Engineering University of California, Berkeley, CA, USA.
  15. Park, T., Hwang, W. S., Leon, R. T., Hu, J. W. (2011). "Damage evaluation of composite-special moment frames with concretefilled tube columns under strong seismic loads." Journal of the Korean Society of Civil Engineers, KSCE (DOI 10.1007/s12205-011-1225-6).
  16. Sabelli, R. (2004). "Recommended provisions for buckling- restrained braced frames." AISC Eng. J., Vol. 41, No. 4, pp. 155-175.
  17. Sabelli, R., Mahin, S. A., Chang, C. (2003). "Seismic demands on steel braced-frame buildings with buckling-restrained braces." Eng. Struct., Vol. 25, No. 5, pp. 655-666. https://doi.org/10.1016/S0141-0296(02)00175-X
  18. Somerville, P. G., Smith, N., Punyamurthula, S., Sun, J. (1997). Development of ground motion time histories for phase 2 of the FEMA/SAC steel project, SAC background document, No. SAC /BD 97/04.
  19. Song, G., Ma, N., Li, H. (2006). "Applications of shape memory alloys in civil structures." Eng. Struct., Vol. 28, No. 9, pp. 1266-1274. https://doi.org/10.1016/j.engstruct.2005.12.010
  20. Wada, A., Connor, J., Kawai, H., Iwata, M. Watanabe, A. (1992) "Damage tolerant structures." Proc.5th U.S. - Japan Workshop on the Improvement of Structural Design and Construction Practices Applied Technology Council. (ATC-15-4) 27-39, SanDiego, CA, USA.
  21. Watanabe, A., Hitomi, Y., Yaeki, E., Wada, A., Fujimoto, M. (1988). "Properties of brace encased in buckling-restraining concrete and steel tube." Proc. 9th World Conference on Earthquake Engineering, Vol. 5, pp. 719-724, Tokyo-Kyoto, Japan.