DOI QR코드

DOI QR Code

Hydrodynamic Aspects on Three-dimensional Effects of Vertical-axis Tidal Stream Turbine

조류발전용 수직축 터빈의 유체동력학적 3차원 효과에 관한 연구

  • Hyun, B.S. (Div. of Naval Architecture & Ocean Systems Eng., Korea Maritime Univ.) ;
  • Lee, J.K. (Div. of Naval Architecture & Ocean Systems Eng., Korea Maritime Univ.)
  • 현범수 (한국해양대학교 조선해양시스템공학부) ;
  • 이정기 (한국해양대학교 조선해양시스템공학부)
  • Received : 2012.10.15
  • Accepted : 2013.05.13
  • Published : 2013.05.25

Abstract

Hydrodynamic aspects on three-dimensional effects were investigated in this study for simple and convenient conversion of tidal stream energy using a Vertical-Axis Turbine (VAT). Numerical approach was made to reveal the differences of flow physics between 2-D estimation and rigorous 3-D simulation. It was shown that the 3-D effects were dominant mainly due to the variation of tip vortices around the tip region of rotor blade, causing the loss of lift for steadily translating hydrofoil and the reduction of torque for rotating turbine blade. The 3-D effect was found to be rather prominent for the typical VATs considered in this paper. Simple and yet efficient 2-D approach with the correction of its three-dimensionality was also proposed for practical design and analysis of VAT.

조류발전용 수직축터빈(VAT)의 3차원적인 유체동력학적 성능을 효과적으로 예측할 수 있는 연구를 진행하였다. 수치해석은 2차원과 3차원으로 수행하였으며 이를 통해 물리적 유동현상의 차이를 파악하였다. 3차원 효과는 주로 날개 끝단에서 발생하는 날개끝 보오텍스가 주된 원인으로서, 이로 인해 터빈 날개가 내어주는 양력이 손실되고 회전하는 터빈은 토크가 감소하였다. 이러한 현상은 본 연구에서 채택한 통상적인 수직축 터빈의 스팬-직경비 범위에서 상당한 수준으로 나타남을 확인하였다. 본 연구에서는 대상 터빈을 선정하고 2차원으로 성능해석 후 3차원 효과를 보정하는 비교적 간단하고 효과적인 방법을 제안하였다.

Keywords

References

  1. Abbott, H. I et al., 1959, "Theory of Wing Sections including a summary of airfoil data", 632-633.
  2. Calcagno, G. and Moroso, A., 2006, "Experiment and Numerical investigation of an Innovative Technology for Marine Current Exploitation: the Kobold Turbine", Proc. of 16th International Offshore and Polar Engineering Conference, San Francisco, California, USA, May 28-June.
  3. Castelli, M. R. et al., 2011, "The Darrieus wind turbine : Proposal for a new performance prediction model based on CFD", Energy, Vol.36, 4919-4934. https://doi.org/10.1016/j.energy.2011.05.036
  4. Han, J.S., Choi, D.H., Hyun, B.S., Kim, M.C., Rhee, S.H. and Song, M.S., 2011, "Parametric Numerical Study on the Performance of Helical Tidal Stream Turbines", J. of the Korean Society for Marine Environmental Engineering, Vol.14, No.2, 114-120. https://doi.org/10.7846/JKOSMEE.2011.14.2.114
  5. Han, J.S., Hyun, B.S., Choi, D.H., Mo, J.O., Kim, M.C. and Rhee, S.H., 2010, "Study on Design of Darrieus-type Tidal Stream Turbine Using Parametric Study", J. of the Korean Society for Marine Environmental Engineering, Vol.13, No.4, 241-248.
  6. Howell, R. et al., 2010, "Wind tunnel and numerical study of a small vertical axis wind turbine", Renewable Energy, Vol.35, 412-422. https://doi.org/10.1016/j.renene.2009.07.025
  7. Hyun, BS et al., 2012, "Development of Standardized S/W System for the Integrated Design of Tidal Current Turbines", Final Report, Tidal Stream Energy Research Center, Busan, Korea.
  8. Jung, H.J., Lee, J.H., Rhee, S.H., Song, M.S. and Hyun, B.S., 2009, "Unsteady Flow Around a Two-dimensional Section of a Vertical Axis Turbine for Tidal Stream Energy Conversion", Int'l J. Naval Architecture & Ocean Engineering, Vol.1, 64-69. https://doi.org/10.3744/JNAOE.2009.1.2.064
  9. Kim, B.S., Kim, M.E. and Lee, Y.H., 2008, "Basic Configuration Design and Performance Analysis of a 100kW Wind Turbine Blade using Blade Element Momentum Theory", J. of the Korean Society of Marine Engineering, v.32, no.6, 827-833 https://doi.org/10.5916/jkosme.2008.32.6.827
  10. Laneville, A. and Vittecoq, P., 1986, "Dynamic Stall: The Case of the Vertical Axis Wind Turbine", Journal of Solar Energy Engineering, Vol.108, 140-145. https://doi.org/10.1115/1.3268081
  11. Lee, D.H., Hyun, B.S., Lee, J.K., Kim, M.C. and Rhee, S.H., 2012, "Development of Hydrodynamic Capacity Evaluation Method for a Vertical-Axis Tidal Stream Turbine", J. of the Korean Society for Marine Environmental Engineering, Vol.15, No.2, 142-149. https://doi.org/10.7846/JKOSMEE.2012.15.2.142
  12. Li, Y. and Calisal, S. M., 2010, "Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine", Renewable Energy, Vol.35, 2325-2334. https://doi.org/10.1016/j.renene.2010.03.002
  13. Mitsuhiro, S. et al., 2000, "An Experimental Study of the Characteristics of a Darrieus Turbine for Tidal Power Generation", J. of Electrical Engineering in Japan, Vol.132 (Translated from Denki Gakkai Ronbunshi, Vol.118-B, 781-787, 1988).
  14. Paraschivoiu, I. et al., 1988, "Blade Tip, Finite Aspect Ratio, and Dynamic Stall Effects on the Darrieus Rotor", J. of Propulsion, Vol.4, No.1, 73-80. https://doi.org/10.2514/3.23034
  15. Paraschivoiu, I., 2002, "Wind Turbine Design with Emphasis on Darrieus Concept", 177-188.
  16. Sheldahl, R et al., 1981, "Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines", Technical Report SAND 80-2114, Sandia National Labs., Alberquerque, USA.
  17. Winchester, J. D et al., 2009, "Torque ripple and variable blade force : A comparison of Darrieus and Gorlov-type turbines for tidal stream energy conversion", Proc. of 8th European Wave and Tidal Energy Conference, Uppsala, Sweden.

Cited by

  1. Study on Performance of Vertical-axis Tidal Turbines Applied to the Discharged Channel of Power Plant vol.18, pp.4, 2015, https://doi.org/10.7846/JKOSMEE.2015.18.4.274
  2. Study on Performance Variation According to the Arrangements of Adjacent Vertical-Axis Turbines for Tidal Current Energy Conversion vol.19, pp.2, 2016, https://doi.org/10.7846/JKOSMEE.2016.19.2.151