DOI QR코드

DOI QR Code

POSITIVE RADIAL SOLUTIONS FOR A CLASS OF ELLIPTIC SYSTEMS CONCENTRATING ON SPHERES WITH POTENTIAL DECAY

  • 투고 : 2012.03.18
  • 발행 : 2013.05.31

초록

We deal with the existence of positive radial solutions concentrating on spheres for the following class of elliptic system $$\large(S) \hfill{400} \{\array{-{\varepsilon}^2{\Delta}u+V_1(x)u=K(x)Q_u(u,v)\;in\;\mathbb{R}^N,\\-{\varepsilon}^2{\Delta}v+V_2(x)v=K(x)Q_v(u,v)\;in\;\mathbb{R}^N,\\u,v{\in}W^{1,2}(\mathbb{R}^N),\;u,v&gt;0\;in\;\mathbb{R}^N,}$$ where ${\varepsilon}$ is a small positive parameter; $V_1$, $V_2{\in}C^0(\mathbb{R}^N,[0,{\infty}))$ and $K{\in}C^0(\mathbb{R}^N,[0,{\infty}))$ are radially symmetric potentials; Q is a $(p+1)$-homogeneous function and p is subcritical, that is, 1 < $p$ < $2^*-1$, where $2^*=2N/(N-2)$ is the critical Sobolev exponent for $N{\geq}3$.

키워드

참고문헌

  1. N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett. 82 (1999), 2661-2664. https://doi.org/10.1103/PhysRevLett.82.2661
  2. C. O. Alves, Local mountain pass for a class of elliptic system, J. Math. Anal. Appl. 335 (2007), no. 1, 135-150. https://doi.org/10.1016/j.jmaa.2007.01.062
  3. C. O. Alves and S. H. M. Soares, Existence and concentration of positive solutions for a class gradient systems, Nonlinear Differential Equations Appl. 12 (2005), no. 4, 437-457.
  4. A. Ambrosetti, V. Felli, and A. Malchiodi, Ground states of nonlinear Schrodinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. 7 (2005), no. 1, 117-144.
  5. A. Ambrosetti and A. Malchiodi, Perturbation Methods and Semilinear Elliptic Problems on ${\mathbb{R}}^N$, Progr. Math., Birkhauser 240, Boston, 2006.
  6. A. Ambrosetti, A. Malchiodi, and W.-M. Ni, Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, I, Comm. Math. Phys. 235 (2003), no. 3, 427-466. https://doi.org/10.1007/s00220-003-0811-y
  7. A. Ambrosetti, A. Malchiodi, and D. Ruiz, Bound states of nonlinear Schrodinger equations with potentials vanishing at infinity, J. Anal. Math. 98 (2006), 317-348. https://doi.org/10.1007/BF02790279
  8. A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
  9. A. Ambrosetti and D. Ruiz, Radial solutions concentrating on spheres of nonlinear Schrodinger equations with vanishing potentials, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no. 5, 889-907. https://doi.org/10.1017/S0308210500004789
  10. A. Ambrosetti and Z.-Q. Wang, Nonlinear Schrodinger equations with vanishing and decaying potentials, Differential Integral Equations 18 (2005), no. 12, 1321-1332.
  11. M. Badiale, V. Benci, and S. Rolando, A nonlinear elliptic equation with singular potential and applications to nonlinear field equations, J. Eur. Math. Soc. 9 (2007), no. 3, 355-381.
  12. M. Badiale and T. d'Aprile, Concentration around a sphere for a singularly perturbed Schrodinger equation, Nonlinear Anal. 49 (2002), no. 7, Ser. A: Theory Methods, 947-985. https://doi.org/10.1016/S0362-546X(01)00717-9
  13. T. Bartsch and S. Peng, Semiclassical symmetric Schrodinger equations: Existence of solutions concentrating simultaneously on several spheres, Z. Angew. Math. Phys. 58 (2007), no. 5, 778-804. https://doi.org/10.1007/s00033-006-5111-x
  14. J. Byeon, Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli, J. Differential Equations 136 (1997), no. 1, 136-165. https://doi.org/10.1006/jdeq.1996.3241
  15. J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrodinger equations with a general nonlinearity, Arch. Ration. Mech. Anal. 185 (2007), no. 2, 185-200. https://doi.org/10.1007/s00205-006-0019-3
  16. J. Byeon and Z.-Q. Wang, Spherical semiclassical states of a critical frequency for Schrodinger equations with decaying potentials, J. Eur. Math. Soc. 8 (2006), no. 2, 217-228.
  17. J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrodinger equations, Arch. Ration. Mech. Anal. 165 (2002), no. 4, 295-316. https://doi.org/10.1007/s00205-002-0225-6
  18. J. Byeon and Z.-Q. Wang, Standing waves for nonlinear Schrodinger equations with singular potentials, Ann. Inst. H. Poincare Anal. Non Lineaire 26 (2009), no. 3, 943-958. https://doi.org/10.1016/j.anihpc.2008.03.009
  19. J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrodinger equations. II, Calc. Var. Partial Differential Equations 18 (2003), no. 2, 207-219. https://doi.org/10.1007/s00526-002-0191-8
  20. D. N. Christodoulides, T. H. Coskun, M. Mitchell, and M. Segev, Theory of incoherent self-focusing in biased photorefractive media, Phys. Rev. Lett. 78 (1997), 646-649. https://doi.org/10.1103/PhysRevLett.78.646
  21. R. Cipolatti and W. Zumpichiatti, On the existence and regularity of ground states for a nonlinear system of coupled Schrodinger equations in ${\mathbb{R}}^N$, Comput. Appl. Math. 18 (1999), no. 1, 15-29.
  22. R. Cipolatti and W. Zumpichiatti, Orbitally stable standing waves for a system of coupled nonlinear Schrodinger equations, Nonlinear Anal. 42 (2000), no. 3, Ser. A: Theory Methods, 445-461. https://doi.org/10.1016/S0362-546X(98)00357-5
  23. E. N. Dancer and S. Yan, A new type of concentration solutions for a singularly perturbed elliptic problem, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1765-1790.
  24. A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrodinger equation with a bounded potential, J. Funct. Anal. 69 (1986), no. 3, 397-408. https://doi.org/10.1016/0022-1236(86)90096-0
  25. B. D. Esry, C. H. Greene, J. P. Burke, Jr., and J. L. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett. 78 (1997), 3594-3597. https://doi.org/10.1103/PhysRevLett.78.3594
  26. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Grundlehren Math. 224, Springer-Verlag, Berlin Heidelberg, 1983.
  27. A. Hasegawa and Y. Kodama, Solitions in Optical Communications, Academic Press, San Diego, 1995.
  28. M. N. Islam, Ultrafast Fiber Switching Devices and Systems, Cambridge University Press, New York, 1992.
  29. I. P. Kaminow, Polarization in optical fibers, IEEE J. Quantum Electron. 17 (1981), 15-22. https://doi.org/10.1109/JQE.1981.1070626
  30. E. H. Lieb and R. Seiringer, Proof of Bose-Einstein condensation for dilute trapped gases, Phys. Rev. Lett. 88 (2002), 170409. https://doi.org/10.1103/PhysRevLett.88.170409
  31. L. A. Maia, E. Montefusco, and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrodinger system, J. Differential Equations 229 (2006), no. 2, 743-767. https://doi.org/10.1016/j.jde.2006.07.002
  32. C. R. Menyuk, Nonlinear pulse propagation in birefringence optical fiber, IEEE J. Quantum Electron. 23 (1987), 174-176. https://doi.org/10.1109/JQE.1987.1073308
  33. C. R. Menyuk, Pulse propagation in an elliptically birefringent Kerr medium, IEEE J. Quantum Electron. 25 (1989), 2674-2682. https://doi.org/10.1109/3.40656
  34. P. Meystre, Atom Optics, Springer-Verlag, New York, 2001.
  35. D. L. Mills, Nonlinear Optics, Springer-Verlag, Berlin, 1998.
  36. D. C. de Morais Filho and M. A. S. Souto, Systems of p-laplacean equations involving homogeneous nonlinearities with critical Sobolev exponent degrees, Comm. Partial Differential Equations 24 (1999), no. 7-8, 1537-1553. https://doi.org/10.1080/03605309908821473
  37. A. Pomponio, Coupled nonlinear Schrodinger systems with potentials, J. Differential Equations 227 (2006), no. 1, 258-281. https://doi.org/10.1016/j.jde.2005.09.002