DOI QR코드

DOI QR Code

Interpretation of Airborne Magnetic and Radioactive Data for the Uranium Deposit in Geumsan Area

금산 함우라늄광상 분포지역의 항공자력/방사능 탐사자료 해석

  • Shin, Eun-Ju (Technology Business Team, Korea Resources Corporation) ;
  • Ko, Kwangbeom (Technology Business Team, Korea Resources Corporation) ;
  • An, Dongkuk (Technology Business Team, Korea Resources Corporation) ;
  • Han, Kyeongsoo (Technology Business Team, Korea Resources Corporation)
  • 신은주 (한국광물자원공사 기술연구원 기술사업팀) ;
  • 고광범 (한국광물자원공사 기술연구원 기술사업팀) ;
  • 안동국 (한국광물자원공사 기술연구원 기술사업팀) ;
  • 한경수 (한국광물자원공사 기술연구원 기술사업팀)
  • Received : 2012.11.28
  • Accepted : 2013.02.20
  • Published : 2013.02.28

Abstract

We conducted the airborne magnetic and radiometric survey for the characterization of the black shale related and pyrometamorphic uranium deposits distributed in Geumsan area. For the successful characterization of the uranium deposits, the general geological and structural geological features were investigated based on the lithological and linear feature analysis to individual magnetic and radiometric data as the first step. Lithological analysis from the magnetic reduction to the pole and downward continuation map revealed that prominent positive anomalies caused by black and dark gray slate member were clearly recognized as magnetic sources. These results indicate that magnetic survey, even though it is not a direct method for the detection of uranium, can be a useful tool in uranium detection. By the linear feature analysis based on 2nd vertical derivative and curvature map, two linearments corresponded the gray hornfels and black slate member were extracted and in succession, the additional uranium potential zone was inferred. Final discrimination whether uranium-rich or not was confirmed by radiometric and uranium anomaly map. From these analysis, we finally concluded that uranium deposit originated by pyrometamorphic process was confined near the intrusive area only. On the contrary, it was found that black shale related uranium deposit is distributed and extended through out the entire survey area with south-west to north-east direction. In addition, from the linear feature analysis based on radiometric total anomaly map, the typical discontinuous characteristics were recognized in areas where uranium-contained linearments cross the faults. From the above discussion, we concluded that airborne magnetic and radiometric survey are complementary to each other. So it is preferable to carry out simultaneously for the efficient data processing and fruitful interpretation.

금산지역의 흑색셰일형 우라늄광상에 대하여 항공 자력 및 방사능 탐사를 수행하였다. 각 자료의 암상분석과 선구조 분석에 의한 전반적인 지질 및 구조지질적 특성을 살펴보고 이에 기반한 우라늄 광화대의 특성화를 시도하였다. 자극화변환과 하향연속 이상도에서 우라늄광상을 배태하고 있는 흑색 및 암회색 점판암대의 뚜렷한 양의 이상을 인지함으로써 자력탐사의 적용성을 확인하였다. 이차미분 및 곡률을 이용한 선구조 분석을 통해 회색 혼펠스대와 흑색 점판암대를 대표하는 선구조를 도출하고 우라늄 광화대의 추가 부존 가능영역을 추정하였다. 이에 대한 우라늄광 배태여부는 방사능 총이상 및 우라늄 이상도에서 최종 확인하였다. 결론적으로 열변성기원의 우라늄광화대는 국부적인 반면, 흑색셰일형 광화대는 조사지역 전체에 북동-남서방향으로 연속되어 있음을 확인하였다. 또한 우라늄 광화대는 방사능 총이상의 선구조 분석을 통해 단층과 교차하는 곳은 단절되는 전형적인 구조지질적 특징을 보여주었다. 이상의 고찰로부터 항공 자력 및 방사능 탐사는 상호 보완적이며 따라서 병행 수행하는 것이 자료분석 및 해석에 매우 효과적임을 확인하였다.

Keywords

References

  1. Baranov, V., 1957, A new method for interpretation of aeromagnetic maps: Pseudo-gravitic anomalies, Geophysics, 22, 359-383. https://doi.org/10.1190/1.1438369
  2. Dickson, B. L., and Scott, K. M., 1997, Interpretation of aerial gamma ray surveys - adding the geochemical factors, AGSO Journal of Australian Geology & Geophysics, 17(2), 187-200.
  3. IAEA, 2003, Guidelines for radioelement mapping using gamma ray spectrometry data, IAEA-TECDOC-1363.
  4. Kim, O. J., 1967, Stratigraphy and Tectonics of Okcheon System in the Area between Chungju and Munkyeong, Journal of the Korean Institute of Mining Geology, 1, 35-46.
  5. Korea Resources Corporation, 2009, Detailed Survey Report (Uranium: Daejeon).
  6. Lim, S. B., Chun, H. Y., Kim, Y. B., and Song, K. Y., 2006, Stratigraphy and geological ages of the metasedimentary strata in Jinsan-Boksu area, Chungcheongnam-do, NW Okcheon belt, Journal of the Geological Society of Korea, 42, 149-174.
  7. Ministry of Science and Technology, 1995, Geology and mineral deposits on the Ogcheon Group.
  8. Ministry of Strategy and Finance, 2008, 1st Master Plan for National Energy.
  9. Minty, B. R. S., 1992, Airborne gamma-ray spectrometric back-ground estimation using full spectrum analysis, Geophysics, 57(2), 279-287. https://doi.org/10.1190/1.1443241
  10. Minty, B. R. S., Luyendyk, A. P. J., and Brodie, R. C., 1997, Calibration and data processing for airborne gamma-ray spectrometry, AGSO Journal of Australian Geology & Geophysics, 17(2), 51-62.
  11. Shives, R. B. K., Charbonneau, B. W., and Ford, K. L., 1997, The detection of potassic alteration by gamma ray spectrometery - Recognition of alteration related to mineralisation. In Proceedings of Exploration 97: Fourth Decennial Conference on Mineral Exploration, edited by A. G. Bubins, 741-752.
  12. Shin, D. B., and Kim, S. J., 2011, Geochemical Characteristics of Black Slate and Coaly Slate from the Uranium Deposit in Deokpyeong Area, Economic and Environmental Geology, 44, 373-386. https://doi.org/10.9719/EEG.2011.44.5.373
  13. Shin, E. J., Ko, K. B., Yoo, Y. J., and Jung, Y. H., 2012, A Case Study on The Data Processing and Interpretation of Aeromagnetic Survey Conducted in The Low Latitude Area: Stung Treng, Cambodia, Geophysics and Geophysical Exploration, 15, 136-143. https://doi.org/10.7582/GGE.2012.15.3.136
  14. Son, C. M., 1970, On the Geological Age of the Ogcheon Group, Journal of the Korean Institute of Mining Geology, 3, 9-15.
  15. Yoo, I. K., 2010, Uranium Resources and Geophysical Review for the Uranium Deposits, Journal of Korean Society For Geosystem Engineering, 47(1), 99-118.
  16. Zebenbergen, L. W., and Thorne, C. R., 1987, Quantitative analysis of land surface topography, Earth Surface Processes and Landforms, 12, 47-56. https://doi.org/10.1002/esp.3290120107

Cited by

  1. Aeromagnetic Pre-processing Software Based on Graphic User Interface, KMagLevellingTM vol.17, pp.3, 2014, https://doi.org/10.7582/GGE.2014.17.3.171
  2. 3D Inversion of Aeromagnetic Data In an Area of Geumsan vol.17, pp.2, 2014, https://doi.org/10.7582/GGE.2014.17.2.049