Effects of Antidiabetic Agent, Aloe QDM complex, on Intracellular Glucose Uptake

항당뇨 물질 Aloe QDM complex의 세포내 포도당 흡수촉진 효능

  • Received : 2013.03.05
  • Accepted : 2013.03.12
  • Published : 2013.03.31

Abstract

Previous studies have shown that Aloe QDM complex, which is consisted of chromium (Cr), aloesin (ALS) and processed Aloe vera gel (PAG), exert antidiabetic activity in a high fat diet-induced mouse model of type 2 diabetes. In this study we examined the mechanism of the antidiabetic activity of the Aloe QDM complex. Rat myoblast cell line L6 cells were cultured in the presence of Cr, ALS, and PAG alone and in combinations, and then the capability of the cells to uptake glucose was examined using radiolabeled glucose. All of the 3 agents, Cr, ALS and PAG, exerted glucose uptake-enhancing activity in L6 cells. The most potent capability to uptake glucose was observed when L6 cells were cultured with the Aloe QDM complex. The activity of the Aloe QDM complex to enhance glucose uptake was prominent in conditions where existing insulin concentrations are low. We also examined the effects of the Aloe QDM complex on the plasma membrane expression of GLUT4 in L6 cells. The Aloe QDM complex increased the content of GLUT4 in the plasma membrane, while decreasing the content of GLUT4 in the light microsome. Taken together, these results show that the antidiabetic activity of the Aloe QDM complex is at least in part due to the stimulation of glucose uptake into the muscle cells, and this activity of the Aloe QDM complex is mediated through the enhancement of the translocation of GLUT4 into the plasma membrane.

Keywords

References

  1. Charles, M. A., Eschwge, E. and Bennett, P. H. (1997) Noninsulin- dependent diabetes in populations at risk : the Pima Indians. Diabetes Metab., Suppl. 4: 6-9.
  2. American Diabetes Association (2002) Report of the Expert Committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 25: S5-S20. https://doi.org/10.2337/diacare.25.2007.S5
  3. Ferrannini, E. (1998) Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus : problems and prospects. Endocr. Rev. 19: 477-490. https://doi.org/10.1210/edrv.19.4.0336
  4. Gerich, J. E. (1998) The genetic basis of type 2 diabetes mellitus : impaired insulin secretion versus impaired insulin sensitivity. Endocr. Rev. 19: 491-503. https://doi.org/10.1210/edrv.19.4.0338
  5. Krentz, A. J. and Bailey, C. J. (2005) Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65: 385-411. https://doi.org/10.2165/00003495-200565030-00005
  6. Cheng, A. Y. and Fantus, I. G. (2005) Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ 172: 213-226. https://doi.org/10.1503/cmaj.1031414
  7. Abbas, A., Blandon, J., Rude, J., Elfar, A. and Mukherjee, D. (2012) PPAR-$\gamma$ agonist in treatment of diabetes: cardiovascular safety considerations. Cardiovasc. Hematol. Agents Med. Chem. 10: 124-134. https://doi.org/10.2174/187152512800388948
  8. Mueckler, M. (1994) Facilitative glucose transporters. Eur. J. Biochem. 219: 713-725. https://doi.org/10.1111/j.1432-1033.1994.tb18550.x
  9. Kim, K., Kim, H., Kwon, J., Lee, S., Kong, H., Im, S.-A., Lee, Y. H., Lee, Y. R., Oh, S. T., Jo, T. H., Park, Y. I., Lee, C. K. and Kim, K. (2009) Hypoglycemic and hypolipidemic effects of processed Aloe vera gel in a mouse model of noninsulin- dependent diabetes mellitus. Phytomedicine 16: 856-863 https://doi.org/10.1016/j.phymed.2009.02.014
  10. Kong, H., Lee, S., Shin, S., Kwon, J., Jo, T. H., Shin, E., Shim, K.-S., Park, Y. I., Lee, C. K. and Kim, K. (2010) Down-regulation of adipogenesis and hyperglycemia in diet- Induced obesity mouse model by Aloe QDM. Biomol. Ther. 18: 336-342. https://doi.org/10.4062/biomolther.2010.18.3.336
  11. Shin, E., Shim, K. S., Kong, H., Lee, S., Shin, S., Kwon, J., Jo, T. H., Park, Y. I., Lee, C. K. and Kim, K. (2011) Dietary aloe improves insulin sensitivity via the suppression of obesity- induced Inflammation in obese mice. Immune Netw. 11: 59-67. https://doi.org/10.4110/in.2011.11.1.59
  12. Devaraj, S., Yimam, M., Brownell, L. A., Jialal, I., Singh, S. and Jia, Q. Effects of Aloe vera supplementation in subjects with prediabetes/metabolic syndrome. Metab. Syndr. Relat. Disord. DOI: 10.1089/met.2012.0066 [Epub ahead of print]
  13. Schwarz, K. and Mertz, W. (1959) Chromium(III) and the glucose tolerance factor. Arch. Biochem. Biophys. 85: 292-295 https://doi.org/10.1016/0003-9861(59)90479-5
  14. Tuman, R. W. and Doisy, R. J. (1977) Metabolic effects of the glucose tolerance factor (GTF) in normal and genetically diabetic mice. Diabetes 26: 820-826. https://doi.org/10.2337/diab.26.9.820
  15. Anderson, R. A., Polansky, M. M., Bryden, N. A. and Bhathena, S. J. (1987) Canary, J.J. Effects of supplemental chromium on patients with symptoms of reactive hypoglycemia. Metabolism 36: 351-355. https://doi.org/10.1016/0026-0495(87)90206-X
  16. Vincent, J. B. (1999) Mechanisms of chromium action: lowmolecular- weight chromium-binding substance. J. Am. Coll. Nutr. 18: 6-12. https://doi.org/10.1080/07315724.1999.10718821
  17. Chen, G., Liu, P., Pattar, G. R., Tackett, L., Bhonagiri, P., Strawbridge, A. B. and Elmendorf, J. S. (2006) Chromium activates glucose transporter 4 trafficking and enhances insulin- stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism. Mol. Endocrinol. 20: 857-870 https://doi.org/10.1210/me.2005-0255
  18. von der Crone, S., Deppe, C., Barthel, A., Sasson, S., Joost, H. G. and Schrmann, A. (2000) Glucose deprivation induces Akt-dependent synthesis and incorporation of GLUT1, but not of GLUT4, into the plasma membrane of 3T3-L1 adipocytes. Eur. J. Cell. Biol. 79: 943-949. https://doi.org/10.1078/0171-9335-00118
  19. Palanivel, R., Maida, A., Liu, Y. and Sweeney, G. (2006) Regulation of insulin signalling, glucose uptake and metabolism in rat skeletal muscle cells upon prolonged exposure to resistin. Diabetologia 49: 183-190. https://doi.org/10.1007/s00125-005-0060-z
  20. Adachi, J., Kumar, C., Zhang, Y. and Mann, M. (2007) Indepth analysis of the adipocyte proteome by mass spectrometry and bioinformatics. Mol. Cell. Proteomics 6: 1257- 1273. https://doi.org/10.1074/mcp.M600476-MCP200
  21. Hyun, C. K., Kim, I. Y. and Frost, S. C. (2004) Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocytes. J. Nutr. 134: 3257-3263.
  22. Agarwal, O. P. (1985) Prevention of atheromatous heart disease. Angiology 36: 485-492. https://doi.org/10.1177/000331978503600801
  23. Ghannam, N., Kingston, M., Al-Meshaal, I. A., Tariq, M. and Parman, N. S., (1986) Woodhouse, N. The antidiabetic activity of aloes: preliminary clinical and experimental observations. Horm. Res. 24: 288-294. https://doi.org/10.1159/000180569
  24. Ajabnoor, M. A. (1990) Effect of aloes on blood glucose levels in normal and alloxan diabetic mice. J. Ethnopharmacol. 28: 215-220. https://doi.org/10.1016/0378-8741(90)90031-N
  25. Bunyapraphatsara, N., Yongchaiyudha, S. and Rungpitarangsi, V. (1996) Chokechaijaroenporn, O. Antidiabetic activity of Aloe vera L. juice. II. Clinical trial in diabetes mellitus patients in combination with glibenclamide. Phytomedicine 3: 245-248. https://doi.org/10.1016/S0944-7113(96)80061-4
  26. Yongchaiyudha, S., Rungpitarangsi, V., Bunyapraphatsara, N. and Chokechaijaroenporn, O. (1996) Antidiabetic activity of Aloe vera L. juice. I. Clinical trial in new cases of diabetes mellitus. Phytomedicine 3: 241-243. https://doi.org/10.1016/S0944-7113(96)80060-2
  27. Beppu, H., Nagamura, Y. and Fujita, K. (1993) Hypoglycaemic and antidiabetic effects in mice of Aloe arborescens Miller var. natalensis Berger. Phytother. Res. 7: S37-S42. https://doi.org/10.1002/ptr.2650070713
  28. Rajasekaran, S., Sivagnanam, K., Ravi, K. and Subramanian, S. (2004) Hypoglycemic effect of Aloe vera gel on streptozotocin- induced diabetes in experimental rats. J. Med. Food 7: 61-66. https://doi.org/10.1089/109662004322984725
  29. Rajasekaran, S., Sivagnanam, K. and Subramanian, S. (2005) Modulatory effects of Aloe vera leaf gel extract on oxidative stress in rats treated with streptozotocin. J. Pharm. Pharmacol. 57: 241-246. https://doi.org/10.1211/0022357055416
  30. Rajasekaran, S., Ravi, K., Sivagnanam, K. and Subramanian, S. (2006) Beneficial effects of Aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes. Clin. Exp. Pharmacol. Physiol. 33: 232-237. https://doi.org/10.1111/j.1440-1681.2006.04351.x
  31. Beppu, H., Shimpo, K., Chihara, T., Kaneko, T., Tamai, I., Yamaji, S., Ozaki, S., Kuzuya, H. and Sonoda, S. (2006) Antidiabetic effects of dietary administration of Aloe arborescens Miller components on multiple low-dose streptozotocin- induced diabetes in mice: investigation on hypoglycemic action and systemic absorption dynamics of aloe components. J. Ethnopharmacol. 103: 468-477. https://doi.org/10.1016/j.jep.2005.10.034
  32. Park, M. Y., Kwon, H. J. and Sung, M. K. (2011) Dietary aloin, aloesin, or aloe-gel exerts anti-inflammatory activity in a rat colitis model. Life Sci. 88: 486-492. https://doi.org/10.1016/j.lfs.2011.01.010
  33. Lee, K. Y., Park, J. H., Chung, M. H., Park, Y. I., Kim, K. W., Lee, Y. J. and Lee, S. K. (1997) Aloesin up-regulates cyclin E/CDK2 kinase activity via inducing the protein levels of cyclin E, CDK2, and CDC25A in SK-HEP-1 cells. Biochem. Mol. Biol. Int. 41: 285-292.
  34. Schwarz, K. and Mertz, W. (1957) A glucose tolerance factor and its differentiation from factor 3. Arch. Biochem. Biophys. 72: 515-518. https://doi.org/10.1016/0003-9861(57)90228-X
  35. Hopkins, L. L. Jr, Ransome-Kuti, O. and Majaj, A. S. (1968) Improvement of impaired carbohydrate metabolism by chromium 3 in manourished infants. Am. J. Clin. Nutr. 21: 203-211
  36. Anderson, R. A. (1987) Chromium. In: trace elements in human and animal nutrition (W. Mertz, ed), 5th ed., 225-244, Academic Press, In., New York.
  37. Offenbacher, E. G. and Pi-Sunyer, F. X. (1980) Beneficial effect of chromium-rich yeast on glucose tolerance and blood lipids in elderly subjects. Diabetes 29: 919-925. https://doi.org/10.2337/diab.29.11.919
  38. Mertz, W. (1969) Chromium occurrence and function in biological systems. Physiol. Rev. 49: 163-239.
  39. Michelle, Furtado, L., Poon, V. and Klip, A. (2003) GLUT4 activation: thoughts on possible mechanisms. Acta Physiol. Scand. 178: 287-296. https://doi.org/10.1046/j.1365-201X.2003.01160.x
  40. Stckli, J., Fazakerley, D. J. and James, D. E. (2011) GLUT4 exocytosis. J. Cell Sci. 124: 4147-4159. https://doi.org/10.1242/jcs.097063