References
- Andriambeloson, E., Kleschyov, A.L., Muller, B., Beretz, A., Stoclet, J.C., and Andriantsitohaina, R., Nitric oxide production and endotheliumdependent vasorelaxation induced by wine polyphenols in rat aorta. Br. J. Pharmacol. 120, 1053-1058 (1997). https://doi.org/10.1038/sj.bjp.0701011
- Andriambeloson, E., Magnier, C., Haan-Archipoff, G., Lobstein, A., Anton, R., Beretz, A., Stoclet, J.C., and Andriantsitohaina, R., Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta. J. Nutr. 128, 2324-2333 (1998). https://doi.org/10.1093/jn/128.12.2324
- Andriambeloson, E., Stoclet, J.C., and Andriantsitohaina, R., Mechanism of endothelial nitric oxide-dependent vasorelaxation induced by wine polyphenols in rat thoracic aorta. J. Cardiovasc. Pharmacol. 33, 248- 254 (1999). https://doi.org/10.1097/00005344-199902000-00011
- Anton, A.H. and Sayre, D.F., A study of the factors affecting the aluminum oxide trihydroxy indole procedure for the analysis of catecholamines. J. Pharmacol. Exp. Ther. 138, 360-375 (1962).
- Breslow, M.J., Tobin, J.R., Bredt, D.S., Ferris, C.D., Snyder, S.H., and Traystman, R.J., Nitric oxide as a regulator of adrenal blood flow. Am. J. Physiol. (Heart Circ Physiol) 264, H464-H469 (1993). https://doi.org/10.1152/ajpheart.1993.264.2.H464
- Breslow, M.J., Tobin, J.R., Bredt, D.S., Ferris, C.D., Snyder, S.H., and Traystman, R.J., Role of nitric oxide in adrenal medullary vasodilation during catecholamine secretion. Eur. J. Pharmacol. 210, 105-106 (1992). https://doi.org/10.1016/0014-2999(92)90659-R
- Burgoyne, R.D., Mechanism of secretion from adrenal chromaffin cells. Biochem. Biophys. Acta. 779, 201-216 (1984).
- Challis, R.A.J., Jones, J.A., Owen, P.J., and Boarder, M.R., Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J. Neurochem. 56, 1083-1086 (1991). https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
-
Cheek, T.R., O'Sullivan, A.J., Moreton, R.B., Berridge, M.J., and Burgoyne, R.D., Spatial localization of the stimulus-induced rise in cytosolic
$ Ca^{2+}$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS Lett. 247, 429-434 (1989). https://doi.org/10.1016/0014-5793(89)81385-7 - Cheong, H., Paudyal, D.P., Jun, J.Y., Yeum, C.H., Yoon, P.J., Park, C.G., Kim, M.Y., So, I., Kim, K.W., and Choi, S., Effects of pine needle extract on pacemaker currents in interstitial cells of Cajal from the murine small intestine. Mol. Cells 20, 235-240 (2005).
- Cheong, H.S. and Lim, D.Y., Pine needle extracts inhibit contractile responses of the isolated rat aortic strips. Natural Product Sciences 16, 123-132 (2010).
- Chung, Y.J., Bae, M.W., Choung, M.I., Lee, J.S., and Chung, K.S., Cytotoxic effect of the distilled pine-needle extracts on several cancer cell lines in vitro. J. Korean Soc. Food Sci. Nutr. 31, 691695 (2002).
- Diebolt, M., Bucher, B., and Andriantsitohaina, R., Wine polyphenols decrease blood pressure, improve NO vasodilatation, and induce gene expression. Hypertension 38, 159-165 (2001). https://doi.org/10.1161/01.HYP.38.2.159
- Douglas, W.W., Stimulus-secretion coupling: The concept and clues from chromaffin and other cells. Br. J. Pharmacol. 34, 451-474 (1968). https://doi.org/10.1111/j.1476-5381.1968.tb08474.x
- Fisher, S.K., Holz, R.W., and Agranoff, B.W., Muscarinic receptors in chromaffin cell culture mediate enhanced phospholipid labeling but not catecholamine secretion. J. Neurochem. 37, 491-487 (1981). https://doi.org/10.1111/j.1471-4159.1981.tb00482.x
-
Fitzpatrick, D.F., Bing, B., and Rohdewald, P., Endothelium-dependent vascular effects of
$Pycnogenol^{(R)}$ . Journal of Cardiovascular Pharmacology 32, 509-515 (1998). https://doi.org/10.1097/00005344-199810000-00001 - Fitzpatrick, D.F., Fleming, R.C., Bing, B., Maggi, D.A., and O'Malley, R., Isolation and characterization of endothelium-dependent vasorelaxing compounds from grape seeds. J. Agric. Food Chem. 48, 6384-6390 (2000). https://doi.org/10.1021/jf0009347
- Fitzpatrick, D.F., Hirschfield, S.L., and Coffey, R.G., Endotheliumdependent vasorelaxing activity of wine and other grape products. Am. J. Physiol. 265, H77-78 (1993).
- Fitzpatrick, D.F., Hirschfield, S.L., Ricci, T., Jantzen, P., and Coffey, R. G., Endothelium-dependent vasorelaxation caused by various plant extracts. J. Cardiovasc. Pharmacol. 26, 90-95 (1995). https://doi.org/10.1097/00005344-199507000-00015
- Freedman, J.E., Li, L., and Sauter, R. et al., alpha-Tocopherol and protein kinase C inhibition enhance platelet-derived nitric oxide release. FASEB J. 14, 2377-23779 (2000). https://doi.org/10.1096/fj.00-0360fje
- Freedman, N.J. and Lefkowitz R.J., Anti-beta(1)-adrenergic receptor antibodies and heart failure: causation, not just correlation. J. Clin. Invest. 113, 1379-1382 (2004). https://doi.org/10.1172/JCI21748
- Garcia, A.G., Sala, F., Reig, J.A., Viniegra, S., Frias, J., Fonteriz, R., and Gandia, L., Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309, 69-71 (1984). https://doi.org/10.1038/309069a0
-
Goeger, D.E. and Riley, R.T., Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on
$ Ca^{2+}$ binding and Ca2+ permeability. Biochem. Pharmacol. 38, 3995-4003 (1989). https://doi.org/10.1016/0006-2952(89)90679-5 - Hammer, R. and Giachetti, A., Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci. 31, 2992-2998 (1982).
- Hano, T., Mizukoshi, M., Baba, A., Nakamura, N., and Nishio, I., Angiotensin II subtype 1 receptor modulates epinephrine release from isolated rat adrenal gland. Blood Press. 5, S105-108 (1994).
- Huang, Y., Chan, N.W.K., Lau, C.W., Yao, X.Q., Chan, F.L., and Chen, Z.Y., Involvement of endothelium/nilvicoxide in vasorelaxation induced by purified green tea (-) epicatechin. Biochim. Biophys. Acta. 1427, 322-328 (1999). https://doi.org/10.1016/S0304-4165(99)00034-3
- Hsu, T.Y., Sheu, S.C., Liaw, E.T., Wang, T.C., and Lin, C.C., Antioxidant activity and effect of Pinus morrisonicola Hay. on the survival of leukemia cell line U937. Phytomedicine 12, 663-669 (2005). https://doi.org/10.1016/j.phymed.2004.03.013
- Ilno, M., Calcium-induced calcium release mechanism in guinea pig taenia caeci. J. Gen. Physiol. 94, 363-383 (1989). https://doi.org/10.1085/jgp.94.2.363
- Jung, M.J., Chung, H.Y., Choi, J.H., and Choi, J.S., Antioxidant principles from the needles of red pine, Pinus densiflora. Phytother. Res. 17, 1064-1068 (2003). https://doi.org/10.1002/ptr.1302
- Kaye, D.M., Lefkowits, J., Jennings, G.L., Bergin, P., Broughton, A., and Esler, M.D., Adverse consequences of high sympathetic nervous activity in the failing human heart. J. Am. Coll. Cardiol. 26, 1257- 1263 (1995). https://doi.org/10.1016/0735-1097(95)00332-0
- Kee, Y.W. and Lim, D.Y., Influence of polyphenolic compounds isolated from Rubus coreanum on catecholamine release in the rat adrenal medulla. Arch. Pharm. Res. 30, 1240-1251 (2007). https://doi.org/10.1007/BF02980265
- Kidokoro, Y. and Ritchie, A.K., Chromaffin cell action potentials and their possible role in adrenaline secretion from rat adrenal medulla. J. Physiol. 307, 199-216 (1980). https://doi.org/10.1113/jphysiol.1980.sp013431
- Kilpatrick, D.L., Slepetis, R.J., Corcoran, J.J., and Kirshner, N., Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J. Neurochem. 38, 427-435 (1982). https://doi.org/10.1111/j.1471-4159.1982.tb08647.x
- Kilpatrick, D.L., Slepetis, R.J., and Kirshner, N., Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells. J. Neurochem. 36, 1245-1255 (1981). https://doi.org/10.1111/j.1471-4159.1981.tb01724.x
-
Knight, D.E. and Kesteven, N.T., Evoked transient intracellular free
$ Ca^{2+}$ changes and secretion in isolated bovine adrenal medullary cells. Proc. R. Soc. Lond. Biol. Sci. 218, 177-199 (1983). https://doi.org/10.1098/rspb.1983.0033 - Lee, E., Effects of powdered pine neele (Pinus densiflora seib et Zucc.) on serum and liver lipid composition and antioxidative capacity in rats fed high oxidized fat. J. Korean Soc. Food Sci. Nutr. 32, 926930 (2003).
- Lee, K.H., Kim, A.J., and Choi, E.M., Antioxidant and antiinflammatory activity of pine pollen extract in vitro. Phytother. Res. 23, 41-48 (2009). https://doi.org/10.1002/ptr.2525
- Lim, D.Y. and Hwang, D.H., Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J. Pharmacol. 27, 53-67 (1991).
- Lim, D.Y., Kim, C.D., and Ahn, K.W., Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch. Pharm. Res. 15, 115-125 (1992). https://doi.org/10.1007/BF02974085
- Lymperopoulos, A., Rengo, G., Funakoshi, H., Eckhart, A.D., and Koch, W.J., Adrenal GRK2 upregulation mediates sympathetic overdrive in heart failure. Nat. Med. 13, 315-323 (2007). https://doi.org/10.1038/nm1553
- Marley, P.D., McLeod, J., Anderson, C., and Thomson, K.A., Nerves containing nitric oxide synthase and their possible function in the control of catecholamine secretion in the bovine adrenal medulla. J. Auton. Nerv. Syst. 54, 184-194 (1995). https://doi.org/10.1016/0165-1838(95)00013-N
- Mizutani, K., Ikeda, K., Kawai, Y., and Yamori, Y., Extract of wine phenolics improves aortic biomechanical properties in stroke-prone spontaneously hypertensive rats (SHRSP). J. Nutr. Sci. Vitaminol. (Tokyo) 45, 95-106 (1999). https://doi.org/10.3177/jnsv.45.95
- Oka, M., Isosaki, M., and Yanagihara, N., Isolated bovine adrenal medullary cells: studies on regulation of catecholamine synthesis and release, in Usdin, E., Kopin, I.J., and Brachas, J. (eds.), Catecholamines: Basic and Clinical frontiers, Pergamon Press, Oxford, pp. 70-72, 1979.
- Oset-Gasque, M.J., Parramon, M., Hortelano, S., Bosca, L., and Gonzalez, M.P., Nitric oxide implication in the control of neurosecretion by chromaffin cells. J. Neurochem. 63, 1693-1700 (1994).
- O'Sullivan, A.J. and Burgoyne, R.D., Cyclic GMP regulates nicotineinduced secretion from cultured bovine adrenal chromaffin cells: effects of 8-bromo-cyclic GMP, atrial natriuretic peptide, and nitroprusside (nitric oxide). J. Neurochem. 54, 1805-1808 (1990). https://doi.org/10.1111/j.1471-4159.1990.tb01238.x
- Palacios, M., Knowles, R.G., Palmer, R.M., and Moncada, S., Nitric oxide from L-arginine stimulates the soluble guanylate cyclase in adrenal glands. Biochem. Biophys. Res. Commun. 165, 802-809 (1989). https://doi.org/10.1016/S0006-291X(89)80037-3
- Park, C.S., Kwon, C.J., Choi, M.A., Park, G.S., and Choi, K.H., Antioxidative and nitrite scavenging activities of mugwort and pine needle extracts. Korean J. Food Pres. 9, 248-252 (2002).
- Pecha ova, O., Bernatova, I., Babál, P., Martinez, M.C., Kysela, S., Stvrtina, S., and Andriantsitohaina, R., Red wine polyphenols prevent cardiovascular alterations in L-NAME-induced hypertension. J. Hypertens. 22, 1551-1559 (2004a). https://doi.org/10.1097/01.hjh.0000133734.32125.c7
- Rodriguez-Pascual, F., Miras-Portugal, M.T., and Torres, M., Effect of cyclic GMP-increasing agents nitric oxide and C-type natriuretic peptide on bovine chromaffin cell function: inhibitory role mediated by cyclic GMP-dependent protein kinase. Mol. Pharmacol. 49, 1058- 1070 (1996).
-
Schramm, M., Thomas, G., Towart, R., and Franckowiak, G., Novel dihydropyridines with positive inotropic action through activation of
$ Ca^{2+}$ - channels. Nature 303, 535-537 (1983). https://doi.org/10.1038/303535a0 - Schwarz, P.M., Rodriguez-Pascual, F., Koesling, D., Torres, M., and Förstermann, U., Functional coupling of nitric oxide synthase and soluble guanylyl cyclase in controlling catecholamine secretion from bovine chromaffin cells. Neuroscience 82, 255-265 (1998).
-
Seidler, N.W., Jona, I., Vegh, N., and Martonosi, A., Cyclopiazonic acid is a specific inhibitor of the
$ Ca^{2+}$ -ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264, 17816-17823 (1989). -
Seidler, N.W., Jona, I., Vegh, N., and Martonosi, A., Cyclopiazonic acid is a specific inhibitor of the
$ Ca^{2+}$ -ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264, 17816-17823 (1989). -
Suzuki, M., Muraki, K., Imaizumi, Y., and Watanabe, M., Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum
$ Ca^{2+}$ -pump, reduces$ Ca^{2+}$ -dependent$K^{+}$ currents in guinea-pig smooth muscle cells. Br. J. Pharmacol. 107, 134-140 (1992). https://doi.org/10.1111/j.1476-5381.1992.tb14475.x - Tallarida, R.J. and Murray, R.B., Manual of pharmacologic calculation with computer programs. 2nd ed, Speringer-Verlag, New York, 1987
- Torres, M., Ceballos, G., and Rubio, R., Possible role of nitric oxide in catecholamine secretion by chromaffin cells in the presence and absence of cultured endothelial cells. J. Neurochem. 63, 988-996 (1994).
-
Uchiyama, Y., Morita, K., Kitayama, S., Suemitsu, T., Minami, N., Miyasako, T., and Dohi, T., Possible involvement of nitric oxide in acetylcholine-induced increase of intracellular
$ Ca^{2+}$ concentration and catecholamine release in bovine adrenal chromaffin cells. Jpn. J. Pharmacol. 65, 73-77 (1994). https://doi.org/10.1254/jjp.65.73 -
Uyama, Y., Imaizumi, Y., and Watanabe, M., Effects of cyclopiazonic acid, a novel
$ Ca^{2+}$ -ATPase inhibitor on contractile responses in skinned ileal smooth muscle. Br. J. Pharmacol. 106, 208-214 (1992). https://doi.org/10.1111/j.1476-5381.1992.tb14316.x - Wada, Y., Satoh, K., and Taira, N., Cardiovascular profile of Bay-K-8644, a presumed calcium channel activator in the dog. Naunyn- Schmiedebergs Arch. Pharmacol. 328, 382-387 (1985a).
- Wada, A., Takara, H., Izumi, F., Kobayashi, H., and Yanagihara, N., Influx of 22Na through acetylcholine receptor-associated Na channels: relationship between 22Na influx, 45Ca influx and secretion of catecholamines in cultured bovine adrenal medullary cells. Neuroscience 15, 283-292 (1985b). https://doi.org/10.1016/0306-4522(85)90135-6
- Wakade, A.R., Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J. Physiol. 313, 463-480 (1981) https://doi.org/10.1113/jphysiol.1981.sp013676
- Wakade, A.R. and Wakade, T.D., Contribution of nicotinic and muscarinic receptors in the secretion of catecholamines evoked by endogenous and exogenous acetylcholine. Neuroscience 10, 973-978 (1983). https://doi.org/10.1016/0306-4522(83)90235-X
- Wang, D., Chen, J., Xu, Z., Qiao, X., and Huang, L., Disappearance of polycyclic aromatic hydrocarbons sorbed on surfaces of pine [Pinua thunbergii] needles under irradiation of sunlight: Volatilization and photolysis. Atmos. Environ.39, 4583-4591 (2005). https://doi.org/10.1016/j.atmosenv.2005.04.008
- Westfall, T.C. and Westfall, D.P., Adrenergic agonists and antagonists, in Brunton, L.L., Lazo, J.S., and Parker, K.L. (eds.), Goodman & Gilman the pharmacological basis of therapeutics, 11th ed, McGraw-Hill, New York, pp. 237-295, 2005.
- Yanagihara, N., Isosaki, M., Ohuchi, T., and Oka, M., Muscarinic receptor-mediated increase in cyclic GMP level in isolated bovine adrenal medullary cells. FEBS Lett. 105, 296-298 (1979). https://doi.org/10.1016/0014-5793(79)80633-X
- Yu, B.S., Ko, W.S., and Lim, D.Y., Inhibitory mechanism of polyphenol compounds isolated from red wine on catecholamine release in the perfused rat adrenal medulla. Biomolecules & Therapeutics 16, 147- 160 (2008). https://doi.org/10.4062/biomolther.2008.16.2.147
- Zenebe, W., Pecháòova, O., and Andriantsitohaina, R., Red wine polyphenols induce vasorelaxation by increased nitric oxide bioactivity. Physiol. Res. 52, 425-432 (2003).