강황이 LPS로 유도된 폐손상에 미치는 영향

Effects of Root of Curcumin longa on LPS-induced Lung Injury

  • 오지석 (대전대학교 한의과대학 폐계내과학교실) ;
  • 양수영 (대전대학교 한의과대학 폐계내과학교실) ;
  • 김민희 (대전대학교 한의과대학 신경생리학교실) ;
  • 남궁욱 (대전대학교 한의과대학 신경생리학교실) ;
  • 박양춘 (대전대학교 한의과대학 폐계내과학교실)
  • Oh, Ji-Seok (Division of Respiratory System, Dept. of Internal Medicine, College of Oriental Medicine, Daejeon University) ;
  • Yang, Su-Young (Division of Respiratory System, Dept. of Internal Medicine, College of Oriental Medicine, Daejeon University) ;
  • Kim, Min-Hee (Dept. of Neurophysiology, College of Oriental Medicine, Daejeon University) ;
  • Namgung, Uk (Dept. of Neurophysiology, College of Oriental Medicine, Daejeon University) ;
  • Park, Yang-Chun (Division of Respiratory System, Dept. of Internal Medicine, College of Oriental Medicine, Daejeon University)
  • 투고 : 2012.08.17
  • 심사 : 2012.10.31
  • 발행 : 2013.03.31

초록

Objectives: This study aimed to evaluate the effects of root of Curcumin longa (RCL) on LPS-induced COPD (chronic obstructive pulmonary disease) model. Materials and Methods: Extract of RCL was treated to RAW 264.7 cells and LPS-induced COPD mouse model. Then, various parameters such as cell-based protective activity, airflow limitation, accumulation of immune cells and histopathological finding were analyzed. Results: RCL showed a protective effect on LPS-induced cytotoxicity in RAW 264.7 cells. RCL treatment also revealed a protective effect on LPS-induced lung injury in a COPD mouse model. This effect was demonstrated via the reduction of accumulation of immune cells and pathophysiological regulation of caspase 3, elastin and collagen in lung tissue. Conclusions: These data suggest that RCL has a pharmaceutical property on lung injury. This study provides scientific evidence for the efficacy of RCL for clinical application to COPD patients.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. Hurd S. The impact of COPD on lung health worldwide: epidemiology and incidence. Chest. 2000;117(2 Suppl):1S-4S. https://doi.org/10.1378/chest.117.2_suppl.1S
  2. Mannino DM. COPD: epidemiology, prevalenc e, morbidity and mortality, and disease heteroge neity. Chest 2002;121:121S-126S. https://doi.org/10.1378/chest.121.5_suppl.121S
  3. Doll R, Peto R, Boreham J, Sutherland I. Mortality in relation to smoking: 50 years' observations on male British doctors. BMJ 2004;328:1519. https://doi.org/10.1136/bmj.38142.554479.AE
  4. Mannino DM, Braman S. The epidemiology and economics of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2007; 4(7):502-506. https://doi.org/10.1513/pats.200701-001FM
  5. Yoo CG. Special Review-Updates of COPD : Pathogenesis and pathophysiology of COPD. Korean J Med. 2009;77(4):383-400.
  6. Curtis JL, Freeman CM, Hogg JC. The immunopathogenesis of chronic obstructive pulmonary disease: insights from recent research. Proc Am Thorac Soc. 2007;4:512-521. https://doi.org/10.1513/pats.200701-002FM
  7. Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet. 2004;364:709-721. https://doi.org/10.1016/S0140-6736(04)16900-6
  8. Yanai M, Sekizawa K, Ohrui T, Sasaki H, Takishima T. Site of airway obstruction in pulmonary disease: direct measurement of intrabronchial pressure. J Appl Physiol. 1992;72:1016-1023.
  9. Chang J. Pharmacologic Treatment of COPD. Tuberc Respir Dis. 2005;59(3):231-242.
  10. Barnes PJ, Hansel TT. Prospects for new drugs for chronic obstructive pulmonary disease. Lancet. 2004;364(9438):985-996. https://doi.org/10.1016/S0140-6736(04)17025-6
  11. Gaschler GJ, Bauer CM, Zavitz CC, Stämpfli MR. Animal models of chronic obstructive pulmonary disease exacerbations. Contrib Microbiol. 2007;14:126-141.
  12. Jung SK, Jung HJ, Kim JD, Choi HY, Park MY, Park YC, et al. Pye-gye-nae-gwa-hak. Seoul: Nado. 2011:510-511.
  13. Kim YR, Lee HJ, Keum KS. A comparative study of Curcuma longa L. and Curcuma aromatica S. in medical texts. Korean J Orient Med Inform. 2011;17(1):203-255.
  14. Kim SH, Lee CH, Ahn DG, Lee SI, Lee YJ, Kang BS, et al. Bon-cho-hak. Seoul: Younglim-sa. 1994:415-416.
  15. Lee JH, Kim JH, Park SY, Choi JH. Effects of Curcuma longa Rhizoma on asthma induced intra-nasal instillation of ovalbumin in mice. J Korean Orient Med Ophthalmol Otolaryngol Dermatol. 2008;21(3):20-35.
  16. Kim HJ, Lee JW, Kim YD. Antimicrobial activity and antioxidant effect of Curcuma longa, Curcuma aromatica and Curcuma zedoaria . Korean J Food Preservation. 2011; 18(2):219-225.
  17. Moghaddam SJ, Barta P, Mirabolfathinejad SG, Ammar-Aouchiche Z, Garza NT, Vo TT, et al. Curcumin inhibits COPD-like airway inflammation and lung cancer progression in mice. Carcinogenesis. 2009;30(11):1949-1956. https://doi.org/10.1093/carcin/bgp229
  18. Lee CJ, Lee JH, Seok JH, Hur GM, Park YC, Seol IC, et al. Effects of baicalein, berberine, curcumin and hesperidin on mucin release from airway goblet cells. Planta Med. 2003; 69(6):523-526. https://doi.org/10.1055/s-2003-40655
  19. Ammar el-SM, Gameil NM, Shawky NM, Nader MA. Comparative evaluation of anti-inflammatory properties of thymoquinone and curcumin using an asthmatic murine model. Int Immunopharmacol. 2011 Dec;11(12): 2232-2236. https://doi.org/10.1016/j.intimp.2011.10.013
  20. Karaman M, Firinci F, Cilaker S, Uysal P, Tugyan K, Yilmaz O, et al. Anti-inflammatory effects of curcumin in a murine model of chronic asthma. Allergol Immunopathol (Madr). 2011;19:1-5.
  21. Patwardhan RS, Checker R, Sharma D, Kohli V, Priyadarsini KI, Sandur SK. Dimethoxycurc umin, a metabolically stable analogue of curcu min, exhibits anti- inflammatory activities in m urine and human lymphocytes. Biochem Pharm acol. 2011;82(6): 642-657. https://doi.org/10.1016/j.bcp.2011.06.024
  22. Zhao C, Cai Y, He X, Li J, Zhang L, Wu J, et al. Synthesis and anti-inflammatory evaluation of novel mono-carbonyl analogues of curcumin in LPS-stimulated RAW 264.7 macrophages. Eur J Med Chem. 2010;(12): 5773-5780.
  23. Marczylo TH, Verschoyle RD, Cooke DN, Morazzoni P, Steward WP, Gescher AJ. Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemother Pharmacol. 2007;60(2):171-177. https://doi.org/10.1007/s00280-006-0355-x
  24. Teiten MH, Eifes S, Dicato M, Diederich M. Curcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment. Toxins (Basel). 2010;2(1):128-162. https://doi.org/10.3390/toxins2010128
  25. Jobin C, Bradham CA, Russo MP, Juma B, Narula AS, Brenner DA, et al. Curcumin blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity. J Immunol. 1999;163(6):3474-3483.
  26. Lee DJ. The effects of Lonicera japonica on the murine model of Chronic obstructive pulmonary disease[dissertation]. Seoul: Kyung Hee Univ.; 2009.
  27. Park DH, Jung SK, Jung HJ. The Effects of Bee Venom on Lipopolysaccharide (LPS)-induced Chronic Obstructive Pulmonary Disease (COPD). Korean J Orient Int Med 2011; 32(2):203-216.
  28. Nam TH, Park YC. Protective effects of Mundongcheongpye-eum on lung injury induced by elastase. Korean J Orient Physiol Pathol. 2010;24(6):1042-1052.
  29. Lee JG, Yang SY, Kim MH, Namgung U, Park YC. Protective Effects of Socheongryong-tang on Elastase-Induced Lung Injury. J Korean Orient Med. 2011;32(4):83-99.
  30. Kim HW, Yang SW, Kim MH, Namgung U, Park YC. Protective effects of Maekmundongtang on elastase-induced lung injury. J Korean Orient Med. 2011;32(2):63-78.
  31. Oh JS, Park YC. Protective Effects of Gamipalmi-hwan on elastase-induced apoptosis of A549 cells. J Korean Orient Med. 2010; 31(2):137-148.
  32. Yoon JM, Park YC. Protective effects of Seonpyejeongcheon-tang on elastase-induced lung injury in mice. J Korean Orient Int Med. 2010;31(1):84-101.
  33. Vernooy JH, Dentener MA, van Suylen RJ, Buurman WA, Wouters EF. Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am J Respir Cell Mol Biol. 2002;26(1):152-159. https://doi.org/10.1165/ajrcmb.26.1.4652
  34. Ferrari M, Fornasiero MC, Isetta AM. MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J Immunol Methods. 1990;131(2):165-172. https://doi.org/10.1016/0022-1759(90)90187-Z
  35. Finotto S, De Sanctis GT, Lehr HA, Herz U, Buerke M, Schipp M, et al. Treatment of allergi c airway inflammation and hyperresponsiveness by antisense-induced local blockade of GATA-3 expression. J Exp Med. 2001;193(11):1247-1260. https://doi.org/10.1084/jem.193.11.1247
  36. Fang G. Dan-xi-xin-fa-fu-yu (vol 1). Seoul: Daeseongmunhwa-sa. 1993:201.
  37. Tang RC. Xie-zheng-lun. Beijing: Zhong-guo-z hong-yi-yao-chu-ban-she. 1996:134.
  38. Vadas P, Browning J, Edelson J, Pruzanski W. extracellular phospholipase A2 expression and inflammation. J Lipid Mediat. 1993;8:1-8.
  39. Martin TR. Recognition of bacterial endotoxin in the lungs. Am J Respir Cell Mol Biol. 2000;23:128-132. https://doi.org/10.1165/ajrcmb.23.2.f189
  40. Lee ES, Yang SW, Kim MH, Namgung U, Park YC. Effects of root of Liriope spicata on LPS-induced Lung Injury. Korean J Orient Physiol Pathol. 2011;25(4):641-649.
  41. Kim Y, Yang SW, Kim MH, Namgung U, Park YC. Effects of Saengmaekcheongpye-eum on LPS-induced COPD model. J Korean Orient Int Med. 2011;32(2):217-231.
  42. Keane MP, Strieter RM. The importance of balanced pro-inflammatory and antiinflammatory mechanism in diffuse lung disease. Respir Res. 2002;3:5. https://doi.org/10.1186/rr177
  43. Kolb M, Margetts PJ, Anthony DC, Pitossi F, Gauldie J. Transient expression of IL-1β induces acute lung injury and chronic repair leading to pulmonary fibrosis. J Clin Invest. 2001;107:1529-1536. https://doi.org/10.1172/JCI12568
  44. Yoo JH. Pathogenesis of chronic obstructive pulmonary disease. Respiratory Diseases. The Korean Academy of Tuberculosis and Respiratory Diseases. Seoul; Koonja Publishing Inc. 2004:306-307.
  45. Rha YH. Mouse model of bronchial asthma. J Korean Pediatr Assoc. 2002.45(5):568-574.
  46. Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen GL, Irvin CG, et al. Noninvasive mea surement of airway responsiveness in allergic m ice using barometric plethysmography. Am J Re spir Crit Care Med. 1997;156(3 Pt 1):766-775. https://doi.org/10.1164/ajrccm.156.3.9606031
  47. Keatings VM, Collins PD, Scott DM, Barnes PJ. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med. 1996;153(2):530-534. https://doi.org/10.1164/ajrccm.153.2.8564092
  48. Stockley RA. Neutrophils and the pathogenesis of COPD. Chest. 2002 May;121(5 Suppl): 151S-155S. https://doi.org/10.1378/chest.121.5_suppl.151S
  49. Grumelli S, Corry DB, Song LZ, Song L, Green L, Huh J, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med. 2004;1(1):e8. https://doi.org/10.1371/journal.pmed.0010008
  50. Majo J, Ghezzo H, Cosio MG. Lymphocyte population and apoptosis in the lungs of smokers and their relation to emphysema. Eur Respir J. 2001;17(5):946-953. https://doi.org/10.1183/09031936.01.17509460
  51. Cocci F, Miniati M, Monti S, Cavarra E, Gambelli F, Battolla L, et al. Urinary desmosine excretion is inversely correlated with the extent of emphysema in patients with chronic obstructive pulmonary disease. Int J Biochem Cell Biol. 2002;34(6):594-604. https://doi.org/10.1016/S1357-2725(02)00015-8
  52. Stone PJ, Gottlieb DJ, O'Connor GT, Ciccolella DE, Breuer R, Bryan-Rhadfi J, et al. Elastin and collagen degradation products in urine of smokers with and without chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1995; 151(4):952-959.
  53. Foronjy R, D'Armiento J. The role of collagenase in emphysema. Respir Res. 2001;2: 348-352. https://doi.org/10.1186/rr85