DOI QR코드

DOI QR Code

Effects of medicinal herb water extracts on expression of hepatic glucokinase, pyruvate dehydrogenase and acetyl-CoA carboxylase mRNA

한약재 물 추출물이 간세포 Glucokinase, Pyruvate Dehydrogenase, Acetyl-CoA Carboxylase mRNA 발현에 미치는 영향

  • Kim, Hyun Sook (Well-being Bioproducts RIC Center, Kangwon National University) ;
  • Kim, Tae Woo (Well-being Bioproducts RIC Center, Kangwon National University) ;
  • Kim, Dae Jung (Well-being Bioproducts RIC Center, Kangwon National University) ;
  • Lee, Jae Sung (Department of Bio-Health Technology, Kangwon National University) ;
  • Choe, Myeon (Well-being Bioproducts RIC Center, Kangwon National University)
  • 김현숙 (강원대학교 웰빙특산물산업화지역혁신센터) ;
  • 김태우 (강원대학교 웰빙특산물산업화지역혁신센터) ;
  • 김대중 (강원대학교 웰빙특산물산업화지역혁신센터) ;
  • 이재성 (강원대학교 생명건강공학과) ;
  • 최면 (강원대학교 웰빙특산물산업화지역혁신센터)
  • Received : 2013.01.21
  • Accepted : 2013.02.28
  • Published : 2013.04.30

Abstract

We studied the anti-diabetic effects of medicinal herb water extracts on expression of hepatic glucokinase (GCK), pyruvate dehydrogenase (PDH), and acetyl-CoA carboxylase (ACC) mRNA. The medicinal herbs used for experiments were Cornus officinalis (CO), Paeonia suffruticosa Andrews (PSA), Discorea japonica Thunb. (DJ), Rehmannia glutinosa (RG), Lycium chinense (LC), and Pyrus pyrifolia (PP). For GCK mRNA expression, CO, RG, and LC water extracts exhibited a more effective activity than other extracts. Cells treated with RG and LC water extracts showed an increase in expression of PDH mRNA to 191% and 124%, respectively, compared to control. Expression of ACC mRNA was significantly higher in LC water extract. These data indicate that CO, RG, and LC water extracts stimulates expression of hepatic GCK, PDH, and ACC mRNA.

본 연구에서는 산수유, 목단피, 산약, 숙지황, 지골피, 야생배의 한약재 물 추출물이 당대사 관련 효소인 GCK, PDH, ACC mRNA 발현정도에 미치는 영향을 측정하였다. HepG2 세포에 대한 세포독성을 측정한 결과, GCK, PDH, ACC mRNA 발현량을 측정하기 위한 물 추출물의 농도 범위는 세포 생존율에 영향을 주지 않는 100, 250, 500 ppm로 결정하였다. GCK mRNA 발현은 100 ppm에서 숙지황 물 추출물이 165%로 가장 높게 나타났고, 250 ppm에서는 숙지황과 지골피 물 추출물이 각각 180%, 154%로 높았으며, 500 ppm에서는 산수유(195%), 목단피 (157%), 야생배 (139%), 산약 (122%), 지골피 (117%), 숙지황 (113%)의 순으로 GCK mRNA 발현이 증가되었다. PDH mRNA 발현량은 250 ppm 농도에서 지골피, 숙지황 물추출물에서 각각 141%, 118% 증가되었고, 500 ppm에서는 지골피, 숙지황 물 추출물에서 각각 191%, 124% 증가되었다. ACC mRNA 발현량은 500 ppm에서 지골피 (188%), 숙지황 (126%)로 가장 높게 나타났다. 결과적으로 GCK, PDH, ACC mRNA 발현량을 증가시킬 수 있는 소재로 산수유, 숙지황, 지골피 등을 꼽을 수 있겠으며 이들 소재들은 식후 혈당상승을 억제할 수 있는 항당뇨 천연소재로 이용될 수 있음을 제시하였다.

Keywords

References

  1. Egede LE, Ellis C. Diabetes and depression: global perspectives. Diabetes Res Clin Pract 2010; 87(3): 302-312 https://doi.org/10.1016/j.diabres.2010.01.024
  2. Joo CN, Koo JH, Lee HB. Study on the hypoglycemic action of the fat soluble fraction of Panax ginseng C.A. meyer in streptozotocin induced diabetic rats. Korean J Ginseng Sci 1993; 17(1): 13-21
  3. Joo CN, Kim SJ. Hypoglycemic action of the fat soluble fraction of Panax ginseng C.A. meyer in streptozotocin induced diabetic rats. Korean J Ginseng Sci 1993; 17(2): 101-108
  4. Kim OK. Antidiabetic and antioxidative effect of Lycii fructus in streptozotocin-induced diabetic rats. Korean J Pharmacogn 2009; 40(2): 128-136
  5. Park MJ, Kang SJ, Kim AJ. Hypoglycemic effect of Angelica gigas Naki extract in streptozotocin-induced diabetic rats. Korean J Food Nutr 2009; 22(2): 246-251
  6. Takeda Y, Inoue H, Honjo K, Tanioka H, Daikuhara Y. Dietary response of various key enzymes related to glucose metabolism in normal and diabetic rat liver. Biochim Biophys Acta 1967; 136 (2): 214-222 https://doi.org/10.1016/0304-4165(67)90066-9
  7. Huang TH, Yang Q, Harada M, Uberai J, Radford J, Li GQ, Yamahara J, Roufogalis BD, Li Y. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: modulation of cardiac PPAR-$\alpha$-mediated transcription of fatty acid metabolic genes. Toxicol Appl Pharmacol 2006; 210(1-2): 78-85 https://doi.org/10.1016/j.taap.2005.07.020
  8. Kang SY, Paeng JR, Seo KS, Woo JT, Kim SW, Yang IM, Kim JW, Kim YS, Kim KW, Choi YK. Regulation of glucokinase gene expression and activity in the liver of diabetic rats. Korean J Med 1994; 47(2): 203-209
  9. Lee EB, Choi BC, Cho TS. Pharmacological studies on ether fraction of Corni fructus. Yakhak Hoeji 1985; 29(1): 1-10
  10. Kim OK. Antidiabetic and antioxidative effects of Corni fructus in streptozotocin-induced diabetic rats. J Korean Oil Chem Soc 2005; 22(2): 157-167
  11. Joo HK, Jang DJ. Effects of Shanshuyu (Cornus officinalis Sieb) tea and market teas feeding on the hematology and liver function of rat. Korean J Diet Cult 1989; 4(3): 257-264
  12. Seo KI, Lee SW, Yang KH. Antimicrobial and antioxidative activities of Corni fructus extracts. Korean J Postharvest Sci Technol 1999; 6(1): 99-103
  13. Fukuhara Y, Yoshida D. Paeonol: a bio-antimutagen isolated from a crude drug, Moutan cortex. Agric Biol Chem 1987; 51(5): 1441- 1442 https://doi.org/10.1271/bbb1961.51.1441
  14. Mitsuo M, Maruyama H, Kameoka H. Essential oil constituents of "Moutan radicis cortex" Paeonia Moutan Sims. (P. suffruticosa Andrews). Agric Biol Chem 1983; 47(12): 2925-2927 https://doi.org/10.1271/bbb1961.47.2925
  15. You JK, Chung MJ, Kim DJ, Seo DJ, Park JH, Kim TW, Choe M. Antioxidant and tyrosinase inhibitory effects of Paeonia suffruticosa water extract. J Korean Soc Food Sci Nutr 2009; 38(3): 292- 296 https://doi.org/10.3746/jkfn.2009.38.3.292
  16. Park S, Jun DW, Park CH, Jang JS, Park SK, Ko BS, Kim BJ, Choi SB. Hypoglycemic effects of crude extracts of Moutan radicis cortex. Korean J Food Sci Technol 2004; 36(3): 472-477
  17. Lee ST, Chae YH. Botany of herbal resource. Seoul: Hakmun Publishing Co.; 1996. p.130
  18. Jeong HJ, Kim IH. Comparative studies on the antidiabetic activities of Rehmanniae radices -the effect of Rehmanniae radices extracts on streptozotocin-indeced hyperglycemia in rats-. Chung- Ang J Pharm Sci 1990; 4: 22-31
  19. Cho YJ. Charactrization of biological activities of Rehmannia glutinosa extracts. J Life Sci 2012; 22(7): 943-949 https://doi.org/10.5352/JLS.2012.22.7.943
  20. Cho SI. Effects of the Rehmanniae radix preparat on ovariectomized rats. Korean J Herbol 2005; 20(4): 61-67
  21. Sheo HJ, Jun SJ, Lee MY. Effects of Lycii fructus extract on experimentally induced liver damage and alloxan diabetes in rabbits. J Korean Soc Food Nutr 1986; 15(2): 136-143
  22. Kim BW, Roh KS. Study on the activity of GOT and GPT in the hepatotoxic rat treated Lycium chinense mill. Korean J Biomed Lab Sci 2000; 6(3): 187-192
  23. Yoon CG, Kim HH, Chae SN, Oh MJ, Lee GH. Hepatic oxygen free radical and alcohol metabolizing enzyme activities in rats fed diets supplemented with Lycium chinense ethanol extract. J Korean Soc Food Sci Nutr 2001; 30(4): 668-672
  24. Ahn BY, Gwak JS, Ryu SH, Moon GS, Choi DS, Park SH, Han JH. Protective effect of water extract of Lycii cordex radicis on lipid peroxidation of rat skin exposed to ultraviolet B radiation. Agric Chem Biotechnol 2002; 45(4): 218-222
  25. Yu TJ. The food guide. Seoul: Munundang; 1989. p.166
  26. Choi HJ, Park JH, Han HS, Son JH, Son GM, Bae JH, Choi C. Effect of polyphenol compound from Korean pear (Pyrus pyrifolia Nakai) on lipid metabolism. J Korean Soc Food Sci Nutr 2004; 33 (2): 299-304 https://doi.org/10.3746/jkfn.2004.33.2.299
  27. An BJ, Lee JT, Kwak JH, Park JM, Lee JY, Son JH, Bae JH, Choi C. Biological activity of polyphenol group fraction from Korean pear peel. J Korean Soc Appl Biol Chem 2004; 47(1): 92-95
  28. Chung MJ, Walker PA, Brown RW, Hogstrand C. ZINC-mediated gene expression offers protection against H2O2-induced cytotoxicity. Toxicol Appl Pharmacol 2005; 205(3): 225-236 https://doi.org/10.1016/j.taap.2004.10.008
  29. Nakamaru K, Matsumoto K, Taguchi T, Suefuji M, Murata Y, Igata M, Kawashima J, Kondo T, Motoshima H, Tsuruzoe K, Miyamura N, Toyonaga T, Araki E. AICAR, an activator of AMP-activated protein kinase, down-regulates the insulin receptor expression in HepG2 cells. Biochem Biophys Res Commun 2005; 328(2): 449-454 https://doi.org/10.1016/j.bbrc.2005.01.004
  30. Choi HJ, Kim SH, Oh HT, Chung MJ, Cui CB, Ham SS. Effects of Adenophora triphylla ethylacetate extract on mRNA levels of antioxidant enzymes in human HepG2 cells. J Korean Soc Food Sci Nutr 2008; 37(10): 1238-1243 https://doi.org/10.3746/jkfn.2008.37.10.1238
  31. Ferre T, Pujol A, Riu E, Bosch F, Valera A. Correction of diabetic alterations by glucokinase. Proc Natl Acad Sci U S A 1996; 93(14): 7225-7230 https://doi.org/10.1073/pnas.93.14.7225
  32. Munoz MC, Barbera A, Dominguez J, Fernandez-Alvarez J, Gomis R, Guinovart JJ. Effects of tungstate, a new potential oral antidiabetic agent, in Zucker diabetic fatty rats. Diabetes 2001; 50(1): 131-138 https://doi.org/10.2337/diabetes.50.1.131
  33. Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM, Shelton KD, Lindner J, Cherrington AD, Magnuson MA. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic $\beta$ cell-specific gene knock-outs using Cre recombinase. J Biol Chem 1999; 274(1): 305-315 https://doi.org/10.1074/jbc.274.1.305
  34. Pari L, Rajarajeswari N. Efficacy of coumarin on hepatic key enzymes of glucose metabolism in chemical induced type 2 diabetic rats. Chem Biol Interact 2009; 181(3): 292-296 https://doi.org/10.1016/j.cbi.2009.07.018
  35. Jung UJ, Lee MK, Park YB, Kang MA, Choi MS. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int J Biochem Cell Biol 2006; 38(7): 1134-1145 https://doi.org/10.1016/j.biocel.2005.12.002
  36. Kondeti VK, Badri KR, Maddirala DR, Thur SK, Fatima SS, Kasetti RB, Rao CA. Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Food Chem Toxicol 2010; 48(5): 1281-1287 https://doi.org/10.1016/j.fct.2010.02.023
  37. Ko BS, Kwon DY, Hong SM, Park S. In vitro anti-diabetic effects of crude extracts of Platycodi radix. Korean J Food Sci Technol 2007; 39(6): 701-707
  38. Shimizu T, Parker JC, Najafi H, Matschinsky FM. Control of glucose metabolism in pancreatic $\beta$-cells by glucokinase, hexokinase, and phosphofructokinase. Model study with cell lines derived from $\beta$-cells. Diabetes 1988; 37(11): 1524-1530 https://doi.org/10.2337/diab.37.11.1524
  39. Matschinsky FM. Glucokinase as glucose sensor and metabolic signal generator in pancreatic $\beta$-cells and hepatocytes. Diabetes 1990; 39(6): 647-652 https://doi.org/10.2337/diab.39.6.647
  40. Lee HA, Sim HS, Choi KJ, Lee HB. Hypoglycemic action of red ginseng components (II): investigation of the effect of fat soluble fraction from red ginseng on enzymes related to glucose metabolism in cultured rat hapatocytes. Korean J Ginseng Sci 1998; 22 (1): 51-59
  41. Kim HS, Ro YJ, Choe M. Effects of Cordyceps militaris on key enzymes of carbohydrate metabolism. J Korean Soc Food Sci Nutr 2005; 34(10): 1531-1535 https://doi.org/10.3746/jkfn.2005.34.10.1531
  42. Choe M, Kim DJ, Lee HJ, You JK, Seo DJ, Lee JH, Chung MJ. A study on the glucose-regulating enzymes and antioxidant activities of water extracts from medicinal herbs. J Korean Soc Food Sci Nutr 2008; 37(5): 542-547 https://doi.org/10.3746/jkfn.2008.37.5.542
  43. Thampy GK, Haas MJ, Mooradian AD. Troglitazone stimulates acetyl-CoA carboxylase activity through a post-translational mechanism. Life Sci 2000; 68(6): 699-708 https://doi.org/10.1016/S0024-3205(00)00973-5
  44. Kim DJ, Chung MJ, You JK, Seo DJ, Kim JM, Choe M. Effect of medicinal plant water extracts on glucose-regulating enzyme activities in Goto-Kakizaki rat liver cytosol. J Korean Soc Food Sci Nutr 2009; 38(10): 1331-1335 https://doi.org/10.3746/jkfn.2009.38.10.1331

Cited by

  1. Exploration of optimum conditions for production of saccharogenic mixed grain beverages and assessment of anti-diabetic activity vol.47, pp.1, 2014, https://doi.org/10.4163/jnh.2014.47.1.12
  2. L. leaf extract-treated HepG2 cells vol.47, pp.3, 2014, https://doi.org/10.4163/jnh.2014.47.3.167
  3. Aspergillus niger가 생산하는 transglucosidase의 최적 생산 조건 확립 vol.28, pp.8, 2018, https://doi.org/10.5352/jls.2018.28.8.969
  4. Anti-diabetic effects of aqueous extract of Dendropanax morbifera Lev. leaves in streptozotocin-induced diabetic Sprague-Dawley rats vol.61, pp.4, 2013, https://doi.org/10.14405/kjvr.2021.61.e38