DOI QR코드

DOI QR Code

Plant Regeneration and Genetic Diversity of Regenerants from Seed-derived Callus of Reed (Phragmites communis Trinius)

갈대(Phragmites communis Trinius) 성숙종자를 이용한 기내 식물체 재분화와 재분화체의 유전적 다양성

  • Ryu, Jaihyunk (Department of Bioresources Science, Sunchon National University) ;
  • Kim, En-Hwan (Department of Bioresources Science, Sunchon National University) ;
  • So, Hyun-Su (Department of Bioresources Science, Sunchon National University) ;
  • Chung, Mi-Young (Department of Agricultural Education, Sunchon National University) ;
  • Song, Won-Seob (Department of Horticulture, Sunchon National University) ;
  • Bae, Chang-Hyu (Department of Bioresources Science, Sunchon National University)
  • 류재혁 (순천대학교 웰빙자원학과) ;
  • 김은환 (순천대학교 웰빙자원학과) ;
  • 소현수 (순천대학교 웰빙자원학과) ;
  • 정미영 (순천대학교 농업교육과) ;
  • 송원섭 (순천대학교 원예학과) ;
  • 배창휴 (순천대학교 웰빙자원학과)
  • Received : 2013.03.25
  • Accepted : 2013.04.25
  • Published : 2013.04.30

Abstract

This study was carried out to address an efficient in vitro regeneration system from seed-derived callus of Phragmites communis, and to evaluate genetic variations of the regenerants using ISSR markers. Shoot regeneration via calli was greatly influenced by N6 medium compared with MS medium, and plant regeneration frequency was 90% in N6 supplemented with BA 0.25 mg/L and BA 0.5 mg/L. According to ISSR analysis of the thirty regenerants, out of 94 loci detected overall, 16 were identified to be polymorphic with a rate (PR) of 17.0%. The mean gene diversity (h) of different in vitro condition was 0.03 and ranged from 0.008 for N6 with BA 5 mg/L, to 0.040 for MS with IAA 0.1 mg/L+kinetin 2 mg/L. The results indicate that the regenerants have a low genetic variation, and ISSR analysis is effective to detect genetic variation of regenerants.

활용가치가 높은 부존식물자원인 갈대의 기내 번식을 통한 배양체계를 확립하고 재분화 식물체들의 유전적 다양성을 검토한 결과, 성숙종자 유래의 캘러스를 통한 기내 식물체 재분화는 N6배지에서 MS배지보다 양호하였고, 0.25~0.5 mg/L의 BA를 포함한 N6배지에서 가장 높았다. ISSR 마커를 이용하여 재분화 식물체의 유전적 안정성을 분석한 결과, 검출된 총 94 유전좌중 유전적 다형성은 17%였고, 평균 유전자다양도 값(h)은 0.03, BA 5 mg/L를 포함한 N6배지에서 0.008, NAA 0.1 mg/L와 kinetin 2 mg/L를 포함한 MS 배지에서 0.040으로 나타났다. 이것은 재분화된 갈대식물체 개체간에 유전적으로 구조가 매우 단순하고 균일하며, 유전적 다양성 진단에 ISSR 마커가 효과적임을 시사한다.

Keywords

References

  1. Bae, C.H., K. Tohyama, S.C. Lee, Y.P. Lim, H.I Kim, P.S. Song and H.Y. Lee. 2001. Efficient plant regeneration using mature seed-derived callus in Zoysiagrass (Zoysia japonica Steud.) Korean J. Plant Tiss. Cult. 28:61-67.
  2. Cho, J.H. and J.H. Byeon. 2011. Establishment of callus induction and plant regeneration system from mature seeds of Miscanthus sinensis. Korean J. Plant Res. 24:628-635. https://doi.org/10.7732/kjpr.2011.24.5.628
  3. Chu, C.C., C.C. Wang, C.S. Sun, C. Hsu, K.C. Yin and C.Y. Chu. 1975. Establishment of an efficient medium for anther culture in rice through comparative experiments on the nitrogen sources. Sci. Sinca 18:659-668.
  4. Esselman, E., J.L. Jiangquiang, D.J. Crawford, J.L. Winduss and A.D. Wolfe. 1999. Clonal diversity in the rare Calamagrosis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and their simple sequence repeat (ISSR) markers. Molecul. Ecology 8:443-451. https://doi.org/10.1046/j.1365-294X.1999.00585.x
  5. Fang, G., S. Hammar and R. Grumet. 1992. A quick inexpensive method of removing ploysaccharides from plant genomic DNA. Biotechniques 13:52-55.
  6. Fang, D.Q. and M.L Roose 1997. Identification of closely related citrus cultivars with inter-simple sequence markers. Theor. Appl. Genet. 95:408-417. https://doi.org/10.1007/s001220050577
  7. Goto, S.R., C. Thakur and K. Ishii. 1998. Determination of genetic stability in long term micropropagated shoots of Pinus thungergii part using RAPD markers. Plant Cell Rep. 18:193-197. https://doi.org/10.1007/s002990050555
  8. Godwin, I.D., E.A.B. Aiken and L.W. Smith. 1997. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18:1524-1528. https://doi.org/10.1002/elps.1150180906
  9. Guo, W., R. Wang, S. Zhou, S. Zhang and Z. Zhang. 2003. Genetic diversity and clonal structure of Phragmites australis in the Yellow River delta of China. Biochem. Syst. Ecol. 31:1093-1109. https://doi.org/10.1016/S0305-1978(03)00032-2
  10. Iruela, M., J. Rubio, J.L. Cubero, J. Gil and T. Mill. 2002. Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers. Theor. Appl. Genet. 104:643-651. https://doi.org/10.1007/s001220100751
  11. Jikku, J., K. Nimisha, M.A. Anu and P. Nambisan. 2012. Evaluation of somaclonal variation in callus cultures of Jatropha curcas maintained on different hormonal combinations using RAPD markers. Agricultural Sci. 8:616-623.
  12. Karp, A. 1991. On the current understanding of somaclonal variation. In Miflin R. (ed.), Oxford Surveys of Plant Molecular and Cell Biology, Vol. 7, Oxford University Press, New York, USA. pp. 1-58.
  13. Kimura, M. and J.F. Crow. 1964. The number of alleles that can be maintained in a finite population. Genetics 49:725-738.
  14. Kim, Y.G. and J.H. Kim. 2009. Genetic variations and relationships of Phragmites japonica and P. communis according to water environment change. Korean J. Plant Res. 22:152-158 (in Korean).
  15. Kim, Y.G., K.H. Kim and B.H. Lee. 2011. Effect of plant growth regulators on callus induction and plant regeneration from seed culture of reed. Korean J. Grassl. Forage Sci. 31:229-234 (in Korean). https://doi.org/10.5333/KGFS.2011.31.3.229
  16. Kohl, J.G., P. Woitke, H. Kuhl, M. Dewender and G. Konig. 1998. Seasonal changes in dissolved amino acids and sugars in basal culm internodes as physiological indicators of the C/N-balance of Phragmites australis at littoral sites of different trophic status. Aquat. Bot. 60:221-240. https://doi.org/10.1016/S0304-3770(97)00096-X
  17. Koppitz, H., H.H. Ku, K. Hesse and J.G. Kohl. 1997. Some aspects of the importance of genetic diversity in Phragmites australis (Cav) Trin. ex Steudel for the development of reed stands. Bot. Acta 110:217-223. https://doi.org/10.1111/j.1438-8677.1997.tb00632.x
  18. Larkin, P.J. and W.R. Scowcroft. 1981. Somaclonal variationa novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60:197-214. https://doi.org/10.1007/BF02342540
  19. Lauzer, D., D. Sylvain and G. Vicent. 2000. In vitro propagation of reed grass by somatic embryogenesis. Plant Cell. Tiss. Org. Cult. 60:229-234. https://doi.org/10.1023/A:1006499419126
  20. Lee, C.B. 1993. Illustrated Flora of Korea. Hyangmoonsa Press, Seoul, Korea. pp. 783-784.
  21. Lee, K.W., K.Y. Kim, G.J. Choi, Y.C. Lim, W.H. Kim, M.W Jung, S. Seo, B.H. Lee and S.H. Lee. 2008. Callus induction and plant regeneration from mature seeds of timothy. Korean J. Grassl. Forage Sci. 28:165-170 (in Korean). https://doi.org/10.5333/KGFS.2008.28.3.165
  22. Martins, M., D. Sarmento and M.M. Oliveira. 2004. Genetic stability of micropropagated almond plantlets, as assesed by RAPD and ISSR markers. Plant Cell Rep. 23:492-496. https://doi.org/10.1007/s00299-004-0870-3
  23. Modgil, M., K. Mahajan, S.K. Chakrabarti, D.R Sharma and R.C. Sobti. 2005. Molecular analysis of genetic stability in micropropagated apple rootstock MM106. Sci. Hort. 104: 151-160. https://doi.org/10.1016/j.scienta.2004.07.009
  24. Muhammad, T., A. Gowher, H. Fazal, A. Shakeel, A. Nasir and A.S. Aftab. 2008. Callus induction and in vitro plant regeneration of rice (Oryza sativa L.) under various conditions. Biological Sci. 11:255-259.
  25. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tabacco tissue culture. Physiol. Plant 15:473-479. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  26. Nei, M. 1973. Analysis of gene diversity in subdivided population. Proc. Natl Acad Sci. 70:3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  27. Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583-590.
  28. Park, C.H, Y.G. Kim, K.H Kim, I. Alam, H.J. Lee, S.A Sharmin, K.W. Lee and B.H. Lee. 2009. Effect of plant growth regulators on callus induction and plant regeneration from mature seed culture of Miscanthus sinensis. Korean J. Grassl. Forage Sci. 29:291-298 (in Korean). https://doi.org/10.5333/KGFS.2009.29.4.291
  29. Poonawala, I.S., M.M. Jana and R.S. Nadgauda. 1999. Factors influencing bud break and rooting and mass-scale micropropagation of three Phragmites species: P. karka, P. communis and P. australis. Plant Cell Rep. 18:696-700.
  30. Peschke, V.M., R.L. Phillips and B.G. Genenbach. 1987. Discovery of transposable element activity among progeny of tissue culture derived maize plants. Science 238:804-807. https://doi.org/10.1126/science.238.4828.804
  31. Russel, T.R., J.D. Fuller, M. Macaulay, B.G. Hatz, A. Jahoor, W.P. Powell and R. Waugh. 1997. Direct comparison of level of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor. Appl. Genet. 95:714-722. https://doi.org/10.1007/s001220050617
  32. Ryu, J.H., H.Y. Lee and C.H. Bae. 2011. Variation analysis of long-term in vitro cultured Cymbidium goeringii Lindley and Cymbidium kanran Makino. Korean J. Plant Res. 24: 139-149 (in Korean). https://doi.org/10.7732/kjpr.2011.24.2.139
  33. Sopory, S.K and M. Munshi. 1997. Anther culture. In Jain S.M., S.K. Sopory and R.E. Veilleux (eds.), In Vitro Haploid Production in Higher Plants. Kluwer Academic Publishers, Amsterdam, Netherlands. pp. 145-176.
  34. Straub, P.F., D.M. Decker and J.L. Gallagher. (1988) Tissue culture and long-term regeneration of Phragmites australis (Cav.) Trin. ex Steud. Plant Cell. Tiss. Org. Cult. 15:73-80. https://doi.org/10.1007/BF00039891
  35. Tsumura, Y., K. Ohba and S.H. Strauss. 1996. Diversity and inheritance of inter-simple sequence repeat polymorphisms in douglas-fir (Pseudotsuga menziesii) and sugi (Cryptonmeria japonica). Theor. Appl. Genet. 92:40-45. https://doi.org/10.1007/BF00222949
  36. Vladislav, C., K. Barbora, V. Petra, K.S Olga and C. Hana. 2007. Phenotypic and genotypic variation of Phragmites australis: Comparison of populations in two human-made lakes of different age and history. Aquatic Bot. 86:321-330. https://doi.org/10.1016/j.aquabot.2006.11.010
  37. Zheng, K.L., S. Castiglione, M.G. Biasini, C. Morandi and F. Sala. 1987. Nuclear DNA amplification and genetic mapping. Nucl. Acids Res. 19:303-306.
  38. Zhou, T.S. 1995. In vitro culture of Doritaenopsis: comparison between formation of the hyperhydric protocorm-like body (PLB) and the normal PLB. Plant Cell Rep. 15:181-185. https://doi.org/10.1007/BF00193716
  39. Ziedler, A., S. Schneider, C. Jung, A.E. Melchinger and P. Dittrich, P. 1994. The use of DNA fingerprinting in ecological studies of Phragmites australis (Cav) Trin. ex Steudel. Bot. Acta. 107:237-242. https://doi.org/10.1111/j.1438-8677.1994.tb00791.x

Cited by

  1. Anti-stress and Anti-histamine Effects of Phragmites communis, Salicornia herbacea, and Prunus mume vol.14, pp.2, 2016, https://doi.org/10.20402/ajbc.2016.0029
  2. Effect of the Phragmitis Rhizoma Aqueous Extract on the Pharmacokinetics of Docetaxel in Rats vol.22, pp.5, 2019, https://doi.org/10.2174/1386207322666190419110724
  3. 홍띠 기내 재생과 재생 녹색식물체의 유전적 안정성 vol.34, pp.2, 2021, https://doi.org/10.7732/kjpr.2021.34.2.156