DOI QR코드

DOI QR Code

Perspectives of International Human Epigenome Consortium

  • Bae, Jae-Bum (Division of Structural and Functional Genomics, Center for Genome Sciences, Korea National Institute of Health)
  • Received : 2013.01.30
  • Accepted : 2013.02.21
  • Published : 2013.03.31

Abstract

As the International Human Epigenome Consortium (IHEC) launched officially at the 2010 Washington meeting, a giant step toward the conquest of unexplored regions of the human genome has begun. IHEC aims at the production of 1,000 reference epigenomes to the international scientific community for next 7-10 years. Seven member institutions, including South Korea, Korea National Institute of Health (KNIH), will produce 25-200 reference epigenomes individually, and the produced data will be publically available by using a data center. Epigenome data will cover from whole genome bisulfite sequencing, histone modification, and chromatin access information to miRNA-seq. The final goal of IHEC is the production of reference maps of human epigenomes for key cellular status relevant to health and disease.

Keywords

References

  1. Jones PA, Martienssen R. A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop. Cancer Res 2005;65:11241-11246. https://doi.org/10.1158/0008-5472.CAN-05-3865
  2. American Association for Cancer Research Human Epigenome Task Force; European Union, Network of Excellence, Scientific Advisory Board. Moving AHEAD with an international human epigenome project. Nature 2008;454:711-715. https://doi.org/10.1038/454711a
  3. NIH roadmap epigenomics. Bethesda: National Center for Biotechnology Information. Accessed 2013 Jan 30. Available from: http://www.roadmapepigenomics.org.
  4. International Human Epigenome Consortium (IHEC). International Human Epigenome Consortium. Accessed 2013 Jan 30. Available from: http://www.IHEC-epigenomes.net.
  5. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 2010;28:1045-1048. https://doi.org/10.1038/nbt1010-1045
  6. Blueprint Epigenome. Nijmegen: Blueprint Epigenome. Accessed 2013 Jan 30. Available from: http://www.blueprint- epigenome.eu/.
  7. Challis D, Yu J, Evani US, Jackson AR, Paithankar S, Coarfa C, et al. An integrative variant analysis suite for whole exome next-generation sequencing data. BMC Bioinformatics 2012;13:8. https://doi.org/10.1186/1471-2105-13-8
  8. Lian CG, Xu Y, Ceol C, Wu F, Larson A, Dresser K, et al. Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 2012;150:1135-1146. https://doi.org/10.1016/j.cell.2012.07.033
  9. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet 2011;12:529-541. https://doi.org/10.1038/nrg3000
  10. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009;462:315-322. https://doi.org/10.1038/nature08514
  11. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011;471:68-73. https://doi.org/10.1038/nature09798
  12. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease- associated variation in regulatory DNA. Science 2012; 337:1190-1195. https://doi.org/10.1126/science.1222794
  13. Sandhu KS, Li G, Poh HM, Quek YL, Sia YY, Peh SQ, et al. Large-scale functional organization of long-range chromatin interaction networks. Cell Rep 2012;2:1207-1219. https://doi.org/10.1016/j.celrep.2012.09.022
  14. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 2010;7: 461-465. https://doi.org/10.1038/nmeth.1459
  15. Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 2010;11:607-620. https://doi.org/10.1038/nrm2950
  16. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 2012;149:1635-1646. https://doi.org/10.1016/j.cell.2012.05.003
  17. Zhang J, Poh HM, Peh SQ, Sia YY, Li G, Mulawadi FH, et al. ChIA-PET analysis of transcriptional chromatin interactions. Methods 2012;58:289-299. https://doi.org/10.1016/j.ymeth.2012.08.009

Cited by

  1. Statistical methods for detecting differentially methylated loci and regions vol.5, pp.1664-8021, 2014, https://doi.org/10.3389/fgene.2014.00324
  2. Enhancer alterations in cancer: a source for a cell identity crisis vol.6, pp.9, 2014, https://doi.org/10.1186/s13073-014-0077-3
  3. Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project vol.16, pp.1, 2015, https://doi.org/10.1186/s13059-015-0622-4
  4. Adult porcine genome-wide DNA methylation patterns support pigs as a biomedical model vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-1938-x
  5. Automatisierte Herstellung von ChIP-Seq-Sequenzbibliotheken vol.21, pp.5, 2015, https://doi.org/10.1007/s12268-015-0612-9
  6. Prostate cancer epigenetic biomarkers: next-generation technologies vol.34, pp.13, 2015, https://doi.org/10.1038/onc.2014.111
  7. ChARM: Discovery of combinatorial chromatin modification patterns in hepatitis B virus X-transformed mouse liver cancer using association rule mining vol.17, pp.S16, 2016, https://doi.org/10.1186/s12859-016-1307-z
  8. An improved method for isolation of epithelial and stromal cells from the human endometrium vol.62, pp.2, 2016, https://doi.org/10.1262/jrd.2015-137
  9. Identification of the early and late responder genes during the generation of induced pluripotent stem cells from mouse fibroblasts vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0171300
  10. TBC update: personalized epigenetic management of diabetes vol.14, pp.6, 2017, https://doi.org/10.2217/pme-2017-0043
  11. Incorporating Transgenerational Epigenetic Inheritance into Ecological Risk Assessment Frameworks vol.51, pp.17, 2017, https://doi.org/10.1021/acs.est.7b01094
  12. Dynamic changes of the epigenetic landscape during cellular differentiation vol.5, pp.6, 2013, https://doi.org/10.2217/epi.13.67
  13. Personalized epigenetic management of diabetes vol.12, pp.5, 2015, https://doi.org/10.2217/pme.15.17
  14. Principles and methods of in-silico prioritization of non-coding regulatory variants vol.137, pp.1, 2018, https://doi.org/10.1007/s00439-017-1861-0
  15. Epigenetics pp.1755-7399, 2018, https://doi.org/10.1177/1755738018796032
  16. Widespread roles of enhancer-like transposable elements in cell identity and long-range genomic interactions vol.29, pp.1, 2018, https://doi.org/10.1101/gr.235747.118
  17. Prognostic and Predictive Epigenetic Biomarkers in Oncology vol.23, pp.1, 2019, https://doi.org/10.1007/s40291-018-0371-7