DOI QR코드

DOI QR Code

강섬유를 적용한 원전 격납건물의 항공기 충돌해석

Aircraft Impact Analysis of Steel Fiber Reinforced Containment Building

  • 서동원 (세종대학교 건설환경공학과) ;
  • 노혁천 (세종대학교 건설환경공학과)
  • Seo, Dong Won (Department of Civil and Environmental Engineering, Sejong Univ.) ;
  • Noh, Hyuk Chun (Department of Civil and Environmental Engineering, Sejong Univ.)
  • 투고 : 2013.01.16
  • 심사 : 2013.02.28
  • 발행 : 2013.04.30

초록

본 연구에서는 여객용 항공기 충돌 시 강섬유보강콘크리트를 사용한 철근콘크리트 원전 격납건물의 구조적 거동을 유한요소해석을 이용하여 고찰한다. 항공기 충돌에 의해 원전 격납건물에 가해지는 하중은 Riera 충격하중 시간함수와 충돌 시 접촉면적을 이용하여 모델링하였다. 강섬유보강콘크리트의 재료모델은 CSCM Concrete Model을 사용하였다. 기존에 제안된 강섬유보강콘크리트의 강도예상모델을 이용하여 재료모델의 입력변수를 결정하였다. 강섬유의 함유량에 따른 원전 격납 건물의 항공기 충돌에 대한 구조적 거동을 상용 유한요소 해석 프로그램인 LS-DYNA를 이용하여 해석하였다. 해석결과를 바탕으로 항공기 충돌에 대한 저항성을 평가하였으며, 보수적인 안전성이 요구되는 원전 격납건물에 강섬유보강콘크리트를 적용할 경우 항공기 충돌에 대한 저항성 증대 효과를 기대할 수 있는 것으로 고찰되었다.

In this study, the structural performance of nuclear power plant containment buildings, which are made of steel fiber reinforced concrete(SFRC) and subject to aircraft crash, is examined by finite element analyses. The applied loads by aircraft crash against the buildings are modeled using Riera impact load function and by the varying aircraft contact area with respect to time. CSCM concrete model in LS-DYNA is employed to model SFRC. The parameters for the material model are determined from SFRC strength prediction models. Based on the volume ratio of steel fiber in SFRC, the structural performance of nuclear containment buildings subject to aircraft crash are analysed using a commercial finite element analysis program LS-DYNA. The safety assessments of the buildings subject to the crash are discussed and the effectiveness of SFRC for nuclear power plant containment building on the increase of aircraft crash resistance is also evaluated.

키워드

참고문헌

  1. Abbas, H., Paul, D.K., Godbole, P.N., Nayak, G.C. (1996) Aircraft Crash upon Outer Containment of Nuclear Power Plant, Nuclear Engineering and Design, 160, pp.13-50. https://doi.org/10.1016/0029-5493(95)01049-1
  2. Akram Abu-Odeh (2008) Modeling and Simulation of Bogie Impacts on Concrete Bridge Rails using LS-DYNA, 10th International LS-DYNA Users Conference.
  3. American Concrete Institute(ACI) (1997) ACI 349-97: Code Requirements for Nuclear Safety Related Concrete Structures.
  4. Electric Power Research Institute(EPRI) (2002) Deterring Terrorism: Aircraft Crash Impact Analysis Demonstrate Nuclear Power Plant's Structural Strength.
  5. Genadijs Sagals, Nebojsa Orbovic, Anderei Blahoianu (2011) Sensitivity Studies of Reinforced Concrete Slabs under Impact Loading, Transactions of SMiRT 21, Canadian Nuclear Safety Commission, Div-V:Paper ID# 184
  6. Jeon, S.J., Jin, B.M., Kim, Y.J. (2012) Assessment of the Fire Resistance of a Nuclear Power Plant Subjected to a Large Commercial Aircraft Crash, Nuclear Engineering and Design, 247, pp.11-22. https://doi.org/10.1016/j.nucengdes.2012.02.003
  7. Jeon, S.J., Lee, Y.S., Chung, C.H., Chung, Y.S. (2005) Dynamic Nonlinear Response of Domestic Nuclear Containment Buildings Subjected to Large Aircraft Impact Load, Journal of the Korean Society of Civil Engineers, 25(1A), pp.191-200.
  8. Jin, B.M., Jeon, S.J., Lee, Y.S., Kim, Y.J. (2012) Preliminary Study on Evaluation of Impact Resistance Performance of Fiber Reinforced Concrete Walls, Transactions of the Korea Nuclear Society Spring Meeting, Korea Nuclear Society, pp.972-973.
  9. Job Thomas and Ananth Ramaswamy (2007) Mechanical Properties of Steel Fiber-Reinforced Concrete, Journal of Materials in Civil Enginnering, American Society of Civil Engineering, 19(5), pp.385-392. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385)
  10. Kim, M.K., Park, J.H., Choun, Y.-S., Choim, I-K. (2011) Seismic Risk Evaluation for Steel Fiber Applicability Assessment of Containment Structure of Nuclear Power Plant, Proceedings of annual conference of KSCE, pp.415-418.
  11. Nuclear Energy Institute (NEI 07-13) (2009) Methodology for Performing Aircraft Impact Assessments for New Plat Design.
  12. OECD/NEA/CSNI (2002) Specialist Meeting on External Hazards.
  13. Riera, J.D. (1968) On the Stress Analysis of Structures Subjected to Aircraft Forces, Nuclear Engineering and Design, 8, pp.415-426. https://doi.org/10.1016/0029-5493(68)90039-3
  14. Shin, S.S., Park, T.H. (2011) Analysis of Containment Building Subjected to a Large Aircraft Impact using a Hydrocode, Journal of the Korean Society of Civil Engineers, 31(5A), pp.369-378.
  15. Song, Y.S., Shin, S.S., Jung, D.H., Park, T.H. (2011) Numerical Analysis of Nuclear-Pwer Plant Subjected to an Aircraft Impact using Parallel Processor, COSEIK J. Comput. Struct. Eng., 24(6), pp. 715-722.
  16. Sugano, T., Tsubota, H., Kasai, Y., Koshika, N., Orui, S., Von Riesemann, W.A., Bickel, D.C., Parks, M.B. (1993) Full-scale Aircraft Impact Test for Evaluation of Impact Force, Nuclear Engineering and Design, 140, pp.373-385. https://doi.org/10.1016/0029-5493(93)90119-T
  17. United States Nuclear Regulatory Commission (U.S. NRC) (2009) 10 Code of Federal Regulations (CFR) 50. 150: Aircraft Impact Assessment.
  18. Zheng, W., Kwan, A.K.H., Lee, P.K.K. (2001) Direct Tension Test of Concrete, ACI Materials Journal, 98, pp.63-71.