DOI QR코드

DOI QR Code

Study on Radiometric Variability of the Sonoran Desert for Vicarious Calibration of Satellite Sensors

위성센서 대리 검보정을 위한 소노란 사막의 복사 가변성 연구

  • Kim, Wonkook (Department of Geographical Sciences, University of Maryland) ;
  • Lee, Sanghoon (Department of Industrial Engineering, Gachon University)
  • 김원국 (메릴랜드대학교, 지리학과) ;
  • 이상훈 (가천대학교, 산업공학과)
  • Received : 2013.03.29
  • Accepted : 2013.04.18
  • Published : 2013.04.30

Abstract

The Sonoran Desert, which is located in North America, has been frequently used for vicarious calibration of many optical sensors in satellites. Although the desert area has good conditions for vicarious calibration (e.g. high reflectance, little vegetation, large area, low precipitation), its adjacency to the sea and large variability in atmospheric water vapor are the disadvantages for vicarious calibration. For vicarious calibration using top-of-atmospheric (TOA) reflectance, the atmospheric variability brings about degraded precision in vicarious calibration results. In this paper, the location with the smallest radiometric variability in TOA reflectance is sought by using 12-year Landsat 5 data, and corrected the TOA reflectance for bidirectional reflectance distribution function (BRDF) which is another major source of variability in TOA reflectance. Experiments show that the mid-western part of the Sonoran Desert has the smallest variability collectively for visible and near-infrared bands, and the variability from the sunarget-sensor geometry can be reduced by the BRDF correction for the visible bands, but not sufficiently for the infrared bands.

북미 지역에 위치한 소노란 사막은 많은 위성 광학 센서의 대리 검보정에 이용되어왔다. 소노란 사막은 대리 검보정에 적합한 조건들, 즉 높은 반사율, 적은 식생, 비교적 넓은 면적, 적은 강우량 등을 가지고 있지만, 고도가 낮고 바다에 근접해 있어 대기의 수증기량에 계절적 변화가 크다는 단점이 있다. 대기 상층의 반사율(Top-Of-Atmosphere reflectance, TOA reflectance)만을 이용하여 센서의 감퇴(sensor degradation)를 추정하는 대리 검보정 방법의 경우, 이러한 대기 가변성은 대리 검보정의 정밀도를 떨어뜨리는 결과를 가져온다. 이 논문에서는 12년간에 걸쳐 수집된 Landsat 5 영상을 이용해 소노란 사막 지역 내에서 복사도의 가변성이 가장 작은 위치를 찾아내고, TOA 반사율 가변성의 또 다른 원인인 양방향 반사분포함수(Bidirectional reflectance distribution function, BRDF)를 규명하여 그에 대한 보정을 시도하였다. 실험의 결과, 소노란 사막의 중서부가 가시광선과 근적외선 밴드에 대해 고루 낮은 가변성을 가지는 지역임이 밝혀졌고, BRDF 모델을 통하여 태양-타겟-센서 간의 위치변화로 말미암은 가변성을 고려한 결과, 가시광선 밴드들의 경우 그 BRDF 효과가 상당히 감소하였지만, 근적외선 밴드들의 경우 대기 가변성으로 인해 BRDF 효과가 많이 제거되지 못하였음을 관찰하였다.

Keywords

References

  1. Angal, A., X.Xiong, T. Choi, G.Chander, and A. Wu, 2010. Using the Sonoran and Libyan Desert test sites to monitor the temporal stability of reflective solar bands for Landsat 7 enhanced thematic mapper plus and Terra moderate resolution imaging spectroradiometer sensors, Journal of Applied Remote Sensing, 4(1): 043525. https://doi.org/10.1117/1.3424910
  2. Chander, G., B.L. Markham, and D.L. Helder, 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors, Remote Sensing of Environment, 113(5): 893-903. https://doi.org/10.1016/j.rse.2009.01.007
  3. Helder, D.L., B.L. Markham, and K.J.Thome, 2008. Updated radiometric calibration for the Landsat-5 Thematic Mapper reflective bands, IEEE Transactionon Geoscienceand Remote Sensing, 46(10): 3309-3325. https://doi.org/10.1109/TGRS.2008.920966
  4. Irish, R.R., 2000. Landsat 7 automatic cloud cover assessment, Proc. of Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, Orlando, FL, Apr. 24-26, pp. 348-355.
  5. Kim, J., B.J. Sohn, U.S. Jung, H.W. Cheon, E.S. Seo, G.R. Kim, and M.L. Oh, 2008. Simulation of TOA visible radiance for the ocean target and its possible use for satellite sensor calibration, Korean Journal of Remote Sensing, 24(6): 535-549. https://doi.org/10.7780/kjrs.2008.24.6.535
  6. Kim, W., S. Liang, and C. Cao, 2012. On using BRDF models for assessment of radiometric stability of Sonoran Desert, Proc. of 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, Jul. 22-27, pp. 2-5.
  7. Knapp, K.R. and T.H.V. Haar, 2000. Calibration of the eighth geostationary observational environmental satellite (GOES-8) Imager visible sensor, Journal of Atmospheric and Oceanic Technology, 17(12): 1639-1644. https://doi.org/10.1175/1520-0426(2000)017<1639:COTEGO>2.0.CO;2
  8. Morstad, D.L. and D.L. Helder, 2008. Use of pseudoinvariant sites for long-term sensor calibration, Proc. of 2008 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, Jul. 6-7, pp. I-253-I-256.
  9. Roujean, J.L., M. Leroy, and P.-Y. Deschamps, 1992. A bidirectional reflectance model of the earth's surface for the correction of remote sensing data, Journal of Geophysical Research, 97(D18): 20,455-20,468. https://doi.org/10.1029/92JD01411
  10. Smith, D.L., C.T.Mutlow, and R.C.R.Nagaraja, 2002. Calibration monitoring of the visible and nearinfrared channels of the along-track scanning radiometer-2 by use of stable terrestrial sites, Applied optics, 41(3): 515-523. https://doi.org/10.1364/AO.41.000515
  11. Sohn, B.-J., S.-J.Yoo, Y.-S.Kim, and D.-H. Kim, 2000. Examining a vicarious calibration method for the TOA radiance initialization of KOMPSAT OSMI, Korean Journal of Remote Sensing, 16(4): 305-313. https://doi.org/10.7780/kjrs.2000.16.4.305
  12. Staylor, W.F., and J.T. Suttles, 1986. Reflection and emission models for deserts derived from Nimbus-7 ERB scanner measurements, Journal of Applied Meteorology, 25(2): 196-202. https://doi.org/10.1175/1520-0450(1986)025<0196:RAEMFD>2.0.CO;2
  13. Sun, L., X. Hu, M. Guo, and N. Xu, 2012. Multisite calibration tracking for FY-3A MERSI solar bands, IEEE Transactions on Geoscience and Remote Sensing, 50(12): 4929-4942. https://doi.org/10.1109/TGRS.2012.2215613
  14. Uprety, S. and C. Cao, 2012. Radiometric and spectral characterization and comparison of the Antarctic Dome C and Sonoran Desert sites for the calibration and validation of visible and nearinfrared radiometers, Journal of Applied Remote Sensing, 6(1): 063541. https://doi.org/10.1117/1.JRS.6.063541
  15. Woodhouse, C.A., 1997. Winter climate and atmospheric circulation patterns in the Sonoran desert region, USA, International Journal of Climatology, 17(8): 859-873. https://doi.org/10.1002/(SICI)1097-0088(19970630)17:8<859::AID-JOC158>3.0.CO;2-S

Cited by

  1. Radiometric Cross Validation of KOMPSAT-3 AEISS vol.32, pp.5, 2016, https://doi.org/10.7780/kjrs.2016.32.5.10