References
- Stryer, L. In Biochemistry, 4th ed.; W. H. Freeman; New York, 1995; p 17. Chapter 2.
- Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. J. Comb. Chem. 1999, 1, 55. https://doi.org/10.1021/cc9800071
- Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815. https://doi.org/10.1016/S0040-4039(01)91316-4
- Aidhen, I. S.; Ahuja, J. R. Tetrahedron Lett. 1992, 33, 5431. https://doi.org/10.1016/S0040-4039(00)79113-1
- Iseki, K.; Asada, D.; Kuroki, Y. J. Fluorine Chem. 1999, 97, 85. https://doi.org/10.1016/S0022-1139(99)00033-0
- Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchesini, G.; Dolling, U. H.; Grabowski, E. J. Tetrahedron Lett. 1995, 36, 5461.
- Sengupta, S.; Mondal, S.; Das, D. Tetrahedron Lett. 1999, 40, 4107. https://doi.org/10.1016/S0040-4039(99)00693-0
- Martin, R.; Pascual, O.; Romea, P.; Rovira, R.; Urpi, F.; Vilarrasa, J. Tetrahedron Lett. 1997, 38, 1633. https://doi.org/10.1016/S0040-4039(97)00107-X
- Martin, R.; Romea, P.; Tey, C.; Urpi, F.; Vilarrasa, J. Synlett 1997, 1414.
- Michele, B.; Roberto, B.; Massimo, B.; Giovanna, B.; Elisabetta, T.; Enrico, M. J. Org. Chem. 2002, 67, 8938. https://doi.org/10.1021/jo0263061
- Seki, M.; Matsumoto, K. Tetrahedron Lett. 1996, 37, 3165. https://doi.org/10.1016/0040-4039(96)00518-7
- Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61, 10827. https://doi.org/10.1016/j.tet.2005.08.031
- Meshram, H. M.; Reddy, G. S.; Reddy, M. M.; Yadav, J. S. Tetrahedron Lett. 1998, 39, 4103. https://doi.org/10.1016/S0040-4039(98)00666-2
- Cho, D. H.; Jang, D. O. Tetrahedron Lett. 2004, 45, 2285. https://doi.org/10.1016/j.tetlet.2004.01.114
- Shi, F.; Li, J.; Li, C.; Jia, X. Tetrahedron Lett. 2010, 51, 6049. https://doi.org/10.1016/j.tetlet.2010.09.048
- Saito, Y.; Ouchi, H.; Takahata, H. Tetrahedron 2008, 64, 11129. https://doi.org/10.1016/j.tet.2008.09.094
- Glynn, D.; Bernier, D.; Woodward, S. Tetrahedron Lett. 2008, 48, 5687.
- Zhang, L.; Su, S.; Wu, H.; Wang, S. Tetrahedron 2009, 65, 10022. https://doi.org/10.1016/j.tet.2009.09.101
- Ishihara, K.; Yano, T. Org. Lett. 2004, 6, 1983. https://doi.org/10.1021/ol0494459
- Hsieh, J. C.; Cheng, C. H. Chem. Comm. 2005, 36, 4554.
- Tillack, A.; Rudloff, I.; Beller, M. Eur. J. Org. Chem. 2001, 3,523.
- Kapanda, C. N.; Muccioli, G. G.; Labar, G.; Draoui, N.; Lambert, D. M.; Poupaert, J. H. Med. Chem. Res. 2009, 18, 243. https://doi.org/10.1007/s00044-008-9123-2
- Li, J.; Xu, F.; Zhang, Y.; Shen, Q. J. Org. Chem. 2009, 74, 2575. https://doi.org/10.1021/jo802617d
- Campbell, J. B.; Sparks, R. B.; Dedinas, R. F. Synlett. 2011, 3, 357.
Cited by
- ChemInform Abstract: New and Efficient Synthesis of Amides from Acid Chlorides Using Diisobutyl(amino)aluminum. vol.44, pp.40, 2013, https://doi.org/10.1002/chin.201340071
- Synthesis of phosphaisocoumarin amidates via DIBAL-H-mediated selective amidation of phosphaisocoumarin esters vol.12, pp.29, 2014, https://doi.org/10.1039/C4OB00663A
- One-pot synthesis of amides from carboxylic acids activated using thionyl chloride vol.6, pp.41, 2016, https://doi.org/10.1039/C5RA24527C
- An expedient and rapid green chemical synthesis of N-chloroacetanilides and amides using acid chlorides under metal-free neutral conditions vol.11, pp.4, 2018, https://doi.org/10.1080/17518253.2018.1545874
- Synthesis and characterization of 3-acetoxy-2-methyl-N-(phenyl)benzamide and 3-acetoxy-2-methyl-N-(4- methylphenyl)benzamide vol.1151, pp.None, 2018, https://doi.org/10.1016/j.molstruc.2017.09.034
- Two new benzamides: Synthesis, spectroscopic characterization, X-ray diffraction, and electronic structure analyses vol.1203, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2019.127314
- IrIII-Catalyzed direct syntheses of amides and esters using nitriles as acid equivalents: a photochemical pathway vol.44, pp.14, 2013, https://doi.org/10.1039/d0nj00002g