References
- Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University: Oxford, 1998.
- Cole-Hamilton, D. J. Science 2003, 299, 1702. https://doi.org/10.1126/science.1081881
- White, R. J.; Luque, R.; Budarin, V.; Clark, J. H.; Macquarrie, D. J. Chem. Soc. Rev. 2009, 38, 481. https://doi.org/10.1039/b802654h
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N. Chem. Rev. 2008, 108, 2064. https://doi.org/10.1021/cr068445e
- Yavuz, C. T.; Mayo, J. T.; Yu, W. W.; Prakash, A.; Falkner, J. C.; Yean, S.; Cong, L. L. H.; Shipley, J.; Kan, A.; Tomson, M.; Natelson, D.; Colvin, V. L. Science 2006, 314, 964. https://doi.org/10.1126/science.1131475
- Hu, A.; Yee, G. T.; Lin, W. J. Am. Chem. Soc. 2005, 127, 12486. https://doi.org/10.1021/ja053881o
- Alexander, K. T. S.; Robin, L. G. Chem. Eur. J. 2010, 16, 12718. https://doi.org/10.1002/chem.200903527
- Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J. M. Chem. Rev. 2011, 111, 3036. https://doi.org/10.1021/cr100230z
- Karimi, B.; Farhangi, E. Chem. Eur. J. 2011, 17, 6056. https://doi.org/10.1002/chem.201100047
- Hudson, R.; Rivière, A.; Cirtiu, C. M.; Luska, K. L.; Moores, A. Chem. Commun. 2012, 48, 3360. https://doi.org/10.1039/c2cc16438h
- Heravi, M. M.; Baghernejad, B. H.; Oskooie, A. Curr. Org. Chem. 2009, 13, 1002. (References therein). https://doi.org/10.2174/138527209788680790
- Heravi, M. M.; Alinejhad, H.; Bakhtiari, K.; Oskooie, H. A. Mol. Divers. 2010, 14, 621. https://doi.org/10.1007/s11030-009-9196-y
- Mavel, S.; Thery, I.; Gueiffier, A. Arch. Pharm. Med. Chem. 2002, 335, 7. https://doi.org/10.1002/1521-4184(200201)335:1<7::AID-ARDP7>3.0.CO;2-L
- Street, L. J.; Sternfeld, F.; Jelley, R. A.; Reeve, A. J.; Carling, R. W.; Moore, K. W.; McKernan, R. M.; Sohal, B.; Cook, S.; Pike, A.; Dawson, G. R.; Bromidge, F. A.; Wafford, K. A.; Seabrook, G. R.; Thompson, S. A.; Marshall, G.; Pillai, G. V.; Castro, J. L.; Atack, J. R.; MacLeod, A. M. J. Med. Chem. 2004, 47, 3642. https://doi.org/10.1021/jm0407613
- Imamura, Y.; Noda, A.; Imamura, T.; Ono, Y.; Okawara, T.; Noda, H. Life Sci. 2003, 74, 29. https://doi.org/10.1016/j.lfs.2003.06.032
- Kim, J. S.; Lee, H. J.; Suh, M. E.; Choo, H. Y. P.; Lee, S. K.; Park, H. J.; Kim, C.; Park, S. W.; Lee, C. O. Bioorg. Med. Chem. 2004, 12, 3683. https://doi.org/10.1016/j.bmc.2004.04.014
- Lebsack, A. D.; Gunzner, J.; Wang, B.; Pracitto, R.; Schaffhauser, H.; Santini, A.; Aiyar, J.; Bezverkov, R.; Munoz, B.; Liu, W.; Venkatraman, S. Bioorg. Med. Chem. Lett. 2004, 14, 2463.
- Grasso, S.; De Sarro, G.; De Sarro, A.; Micale, N.; Zappala, M.; Puia, G.; Baraldi, M.; De Micheli, C. J. Med. Chem. 2000, 43, 2851. https://doi.org/10.1021/jm001002x
- Nomoto, Y.; Obase, H.; Takai, H.; Teranishi, M.; Nakamura, J.; Kubo, K. Chem. Pharm. Bull. 1990, 38, 2179. https://doi.org/10.1248/cpb.38.2179
- Watanabe, N.; Kabasawa, Y.; Takase, Y.; Matsukura, M.; Miyazaki, K.; Ishihara, H.; Kodama, K.; Adachi, H. J. Med. Chem. 1998, 41, 3367. https://doi.org/10.1021/jm970815r
- Sayyafi, M.; Seyyedhamzeh, M.; Khavasi, H. R.; Bazgir, A. Tetrahedron 2008, 64, 2375. https://doi.org/10.1016/j.tet.2008.01.006
- Shaterian, H. R.; Ghashang, M.; Feyzi, M. Appl. Catal. A-Gen. 2008, 345, 128. https://doi.org/10.1016/j.apcata.2008.04.032
- Khurana, J. M.; Magoo, D. Tetrahedron Lett. 2009, 50, 7300. https://doi.org/10.1016/j.tetlet.2009.10.032
- Shaterian, H. R.; Hosseinian, A.; Ghashang, M. ARKIVOC 2009, (ii), 59.
- Nagarapu, L.; Bantu, R.; Mereyala, H. B. J. Heterocycl. Chem. 2009, 46, 728. https://doi.org/10.1002/jhet.135
- Wang, H.-J.; Zhang, X.-N.; Zhang, Z.-H. Monatsh Chem. 2010, 141, 425. https://doi.org/10.1007/s00706-010-0283-7
- Sabitha, G.; Srinivas, C.; Raghavendar, A.; Yadav, J. S. Helv. Chim. Acta 2010, 93, 1375. https://doi.org/10.1002/hlca.200900378
- Fazaeli, R.; Aliyan, H.; Fazaeli, N. Open Catal. J. 2010, 3, 14. https://doi.org/10.2174/1876214X01003010014
- Ghorbani-Vaghei, R.; Karimi-Nami, R.; Toghraei-Semiromi, Z.; Amiri, M. Tetrahedron 2011, 67, 1930. https://doi.org/10.1016/j.tet.2011.01.024
- Mosaddegh, E.; Hassankhani, A. Tetrahedron Lett. 2011, 52, 488. https://doi.org/10.1016/j.tetlet.2010.08.099
- Rostami, A.; Ahmad-Jangi, F.; Zarehbin, M. R.; Akradi, J. Synth. Commun. 2010, 40, 1500. https://doi.org/10.1080/00397910903097344
- Jafari, H.; Rostami, A.; Ahmad-Jangi, F.; Ghorbani-Choghamarani, A. Synth. Commun. 2012, 9, 489.
- Kassaee, M. Z.; Masrouri, H.; Movahedi, F. Appl. Catal. A-Gen. 2011, 395, 28. https://doi.org/10.1016/j.apcata.2011.01.018
Cited by
- Fast-Growing Field of Magnetically Recyclable Nanocatalysts vol.114, pp.14, 2014, https://doi.org/10.1021/cr500134h
- H-functionalized mesoporous silica materials as solid acid catalyst for facile and solvent-free synthesis of 2H-indazolo[2,1-b]phthalazine-1,6,11-trione derivatives vol.39, pp.12, 2015, https://doi.org/10.1039/C5NJ01733E
- Synthesis of heterocycles and fused heterocycles catalyzed by nanomaterials vol.5, pp.92, 2015, https://doi.org/10.1039/C5RA11421G
- Synthesis of Pd-Complex Supported on MCM-41 and Its Catalytic Activity for the C–C Coupling Reactions vol.146, pp.6, 2016, https://doi.org/10.1007/s10562-016-1727-4
- A facile preparation of palladium Schiff base complex supported into MCM-41 mesoporous and its catalytic application in Suzuki and Heck reactions vol.23, pp.4, 2016, https://doi.org/10.1007/s10934-016-0154-7
- Schiff base complex of palladium immobilized on magnetic nanoparticles: an efficient and recyclable nanocatalyst for CC coupling reactions vol.30, pp.12, 2016, https://doi.org/10.1002/aoc.3531
- magnetic nanoparticles as catalyst for Suzuki and Heck reactions in water or poly(ethylene glycol) vol.30, pp.6, 2016, https://doi.org/10.1002/aoc.3449
- Benzylisothiourea complex of palladium on magnetic nanoparticles: A highly efficient and reusable nanocatalyst for synthesis of polyhydroquinolines and Suzuki reaction vol.31, pp.8, 2016, https://doi.org/10.1002/aoc.3665
- A new palladium complex supported on magnetic nanoparticles and applied as an catalyst in amination of aryl halides, Heck and Suzuki reactions vol.14, pp.3, 2017, https://doi.org/10.1007/s13738-016-1020-x
- -MNPs for the efficient promotion of some multi-component reactions under solvent-free conditions vol.41, pp.20, 2017, https://doi.org/10.1039/C7NJ01863K
- A magnetically retrievable heterogeneous copper nanocatalyst for the synthesis of 5-substituted tetrazoles and oxidation reactions vol.42, pp.8, 2017, https://doi.org/10.1007/s11243-017-0177-1
- N-Propylsulfamic acid supported onto magnetic Fe3O4 nanoparticles (MNPs-PSA) as a green and reusable heterogeneous nanocatalyst for the chemoselective preparation and deprotection of acylals vol.43, pp.11, 2017, https://doi.org/10.1007/s11164-017-3014-4
- Synthesis of Heterocycles Catalyzed by Iron Oxide Nanoparticles vol.94, pp.4, 2017, https://doi.org/10.3987/REV-16-854
- Synthesis and characterization of Cu(II)-Adenine-MCM-41 as stable and efficient mesoporous catalyst for the synthesis of 5-substituted 1H-tetrazoles and 1H-indazolo [1,2-b]phthalazine-triones vol.25, pp.6, 2018, https://doi.org/10.1007/s10934-018-0597-0
- H-catalysed selective oxidation of sulfides to sulfones pp.02682605, 2018, https://doi.org/10.1002/aoc.4553
- Sulfamic acid functionalized 3D-network nanoporous polymer based on calix[4]resorcinarene: a recyclable heterogeneous nanocatalyst for the efficient synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes under thermal neat conditions vol.91, pp.1-2, 2018, https://doi.org/10.1007/s10847-018-0792-2
- Tribromide ion immobilized on magnetic nanoparticles as an efficient catalyst for the rapid and chemoselective oxidation of sulfides to sulfoxides vol.192, pp.1, 2013, https://doi.org/10.1080/10426507.2016.1224878
- Preparation, characterization, and use of novel Cu@Fe3O4 MNPs in the synthesis of tetrahydrobenzimidazo[2,1-b]quinazolin-1(2H)-ones and 2H-indazolo[2,1-b]phthalazine-triones unde vol.9, pp.26, 2019, https://doi.org/10.1039/c9ra01509d
- Novel SO3H-functionalized phenanthrolinum-phosphotungstate ionic liquid for highly promoted three-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones vol.45, pp.10, 2013, https://doi.org/10.1007/s11164-019-03875-4
- Ultrasound-assisted synthesis of heterocyclic compounds vol.24, pp.3, 2020, https://doi.org/10.1007/s11030-019-09964-1
- Application of O-sulfonic acid poly(4-vinylpyrrolidonium) chloride as an efficient polymer-supported catalyst in the rapid synthesis of 2H-indazolo[2,1-b]phthalazine-triones and Biginelli-like product vol.17, pp.12, 2013, https://doi.org/10.1007/s13738-020-01982-3
- Efficient Synthesis of 2H-Indazolo[2,1-b]Phthalazine-Triones Using [PVPH]ClO4 as a Modified Polymeric Catalyst vol.41, pp.2, 2013, https://doi.org/10.1080/10406638.2019.1593863
- A New Supported Manganese-Based Coordination Complex as a Nano-Catalyst for the Synthesis of Indazolophthalazinetriones and Investigation of Its Antibacterial Activity vol.3, pp.3, 2013, https://doi.org/10.3390/chemistry3030056