DOI QR코드

DOI QR Code

Bifunctional Fe-SBA-15-SO3H Mesoporous Catalysts with Different Si/Fe Molar Ratios: Synthesis, Characterization and Catalytic Activity

  • Erdem, Sezer (Department of Physics, Faculty of Science and Arts, Uludag University) ;
  • Erdem, Beyhan (Department of Chemistry, Faculty of Science and Arts, Uludag University) ;
  • Oksuzoglu, Ramis Mustafa (Department of Material Science and Engineering, Faculty of Engineering, Anadolu University) ;
  • Citak, Alime (Department of Chemical Engineering, Eskisehir Osmangazi University)
  • Received : 2012.12.27
  • Accepted : 2013.02.25
  • Published : 2013.05.20

Abstract

Bifunctional Fe-SBA-15-$SO_3H$ mesoporous materials with different Si/Fe molar ratios (3, 5, and 7) have been synthesized via a simple direct hydrothermal method and characterized by XRD, $N_2$-adsorption/desorption, TG/DTG and FT-IR techniques, and used as solid acid catalysts in the esterification of lactic acid with methanol. XRD and $N_2$ sorption characterizations show successful iron doping within the mesoporous channels of SBA-15-$SO_3H$. The FT-IR and TG/DTG characterizations also reveal the presence of iron. With the incorporation of Fe ions into the SBA-15-$SO_3H$, the acid sites substantially increased because of the self-separated acidity of the hydrolysis of $Fe^{3+}$ solutions. However, in the Si/Fe = 3 molar ratio, the catalytic conversion decreased which is caused by the reduced cooperation effect between the acid pairs due to the weakened hydrogen bonds and collapse of the pore structure. This further suggests that the mesoporous structure decreases with the decrease in Si/Fe ratio.

Keywords

References

  1. Gobin, O. C.; Wan, Y.; Zhao, D.; Kleitz, F.; Kaliaguine, S. J. Phys. Chem. C 2007, 111, 3053. https://doi.org/10.1021/jp0635765
  2. Zheng, X.; Dong, B.; Yuan, C.; Zhang, K.; Wang, X. J. Porous Mater. 2012, DOI 10.1007/s10934-012-9626-6.
  3. Kim, J. M.; Stucky, G. D. Chem. Commun. 2000, 1159.
  4. Kim, S. S.; Karkamkar, A.; Pinnavaia, T. J.; Kruk, M.; Jaroniec, M. J. Phys. Chem. B 2001, 105, 7663. https://doi.org/10.1021/jp010773p
  5. Newalkar, B. L.; Olanrewaju, J.; Komarneni, S. J. Phys. Chem. B 2001, 105, 8356. https://doi.org/10.1021/jp010889l
  6. Dong, X.; Shen, W.; Zhu, Y.; Xiong, L.; Shi, J. Adv. Funct. Mater. 2005, 15, 955. https://doi.org/10.1002/adfm.200400430
  7. Sauer, J.; Marlow, F.; Spliethoff, B.; Schüth, F. Chem. Mater. 2002, 14, 217. https://doi.org/10.1021/cm0111377
  8. Karimi, Z.; Mahjoub, A. R. Appl. Surf. Sci. 2010, 256, 4473. https://doi.org/10.1016/j.apsusc.2010.01.077
  9. Shukla, P.; Wang, S.; Sun, H.; Ang, H. M.; Tade, M. Chem. Eng. J. 2010, 164, 255. https://doi.org/10.1016/j.cej.2010.08.061
  10. Zhang, X.; Yuan, C.; Li, M.; Gao, B.; Wang, X.; Zheng, X. J. Non- Cryst. Solids 2009, 355, 2209. https://doi.org/10.1016/j.jnoncrysol.2009.08.007
  11. Nozaki, C.; Lugmair, C. G.; Bell, A. T.; Tilley, T. D. J. Am. Chem. Soc. 2002, 124, 13194. https://doi.org/10.1021/ja020388t
  12. Li, Y.; Zhang, W.; Zhang, L.; Yang, Q.; Wei, Z.; Feng, Z.; Li, C. J. Phys. Chem. B 2004, 108, 9739. https://doi.org/10.1021/jp049824j
  13. Xiu, T.; Liu, Q.; Wang, J. J. Mater. Res. 2007, 22, 1834. https://doi.org/10.1557/jmr.2007.0251
  14. Liu, C. Y.; Chen, C. F.; Leu, J. P.; Lin, Y. C. J. Sol-Gel Sci. Techn. 2007, 43, 47. https://doi.org/10.1007/s10971-007-1534-x
  15. Polshettiwar, V.; Varma, R. S. Green Chem. 2010, 12, 743. https://doi.org/10.1039/b921171c
  16. Li, Y.; Feng, Z.; Lian, Y.; Sun, K.; Zhang, L.; Jia, G.; Yang, Q.; Li, C. Micro. Meso. Mater. 2005, 84, 41. https://doi.org/10.1016/j.micromeso.2005.05.021
  17. Liu, Y.; Lotero, E.; Goodwin, J. G. J. Mol. Catal. A: Chem. 2006, 245, 132. https://doi.org/10.1016/j.molcata.2005.09.049
  18. Choi, J. I.; Hong, W. H.; Chang, H. N. Int. J. Chem. Kinet. 1996, 28, 37. https://doi.org/10.1002/(SICI)1097-4601(1996)28:1<37::AID-KIN5>3.0.CO;2-N
  19. Sanz, M. T.; Murga, R.; Beltran, S.; Cabezas, J. L.; Coca, J. Ind. Eng. Chem. Res. 2002, 41, 512. https://doi.org/10.1021/ie010454k
  20. Sanz, M. T.; Murga, R.; Beltran, S.; Cabezas, J. L.; Coca, J. Ind. Eng. Chem. Res. 2004, 43, 2049. https://doi.org/10.1021/ie034031p
  21. Erdem, B.; Kara, A. React. Funct. Polym. 2011, 71, 219. https://doi.org/10.1016/j.reactfunctpolym.2010.12.003
  22. Zhu, H.; Shanks, B. H.; Heindel, T. J. Ind. Eng. Chem. Res. 2008, 47, 7881. https://doi.org/10.1021/ie800238w
  23. Lai, D.; Deng, L.; Li, J.; Liao, B.; Guo, Q.; Fu, Y. ChemSusChem 2011, 4, 55. https://doi.org/10.1002/cssc.201000300
  24. Van Rhijn, W. M.; De Vos, D. E.; Sels, B. F.; Bossaert, W. D.; Jacobs, P. A. Chem. Commun. 1998, 317.
  25. Kureshy, R. I.; Ahmad, I.; Pathak, K.; Khan, N. H.; Abdi, S. H. R.; Jasra, R. V. Catal. Commun. 2009, 10, 572. https://doi.org/10.1016/j.catcom.2008.10.035
  26. Jackson, M. A.; Appell, M. Appl. Catal. A: Gen. 2010, 373, 90. https://doi.org/10.1016/j.apcata.2009.11.002
  27. Shen, J. G. C.; Herman, R. G.; Klier, K. J. Phys. Chem. B 2002, 106, 9975. https://doi.org/10.1021/jp020131h
  28. Margolese, D.; Melero, J. A.; Christiansen, S. C.; Chmelka, B. F.; Stucky, G. D. Chem. Mater. 2000, 12, 2448. https://doi.org/10.1021/cm0010304
  29. Hermida, L.; Abdullah, A. Z.; Mohamed, A. R. J. Porous Mater. 2012, 19, 835. https://doi.org/10.1007/s10934-011-9538-x
  30. Mayani, S. V.; Mayani, V. J.; Kim, S. W. Bull. Korean Chem. Soc. 2012, 33, 3009. https://doi.org/10.5012/bkcs.2012.33.9.3009
  31. Zheng, Y.; Li, J.; Zhao, N.; Wei, W.; Sun, Y. Micro. Meso. Mater. 2006, 92, 195. https://doi.org/10.1016/j.micromeso.2006.01.011
  32. Citak, A.; Erdem, B.; Erdem, S.; Oksuzo lu, R. M. J. Colloid Interface Sci. 2012, 369, 160. https://doi.org/10.1016/j.jcis.2011.11.070
  33. Yixin, Q.; Shaojun, P.; Shui, W.; Zhiqiang, Z.; Jidong, W. Chin. J. Chem. Eng. 2009, 17, 773. https://doi.org/10.1016/S1004-9541(08)60276-1
  34. Lim, M. H.; Blanford, C. F.; Stein, A. Chem. Mater. 1998, 10, 467. https://doi.org/10.1021/cm970713p
  35. Teja, A. S.; Koh, P. Y. Prog. Cryst. Growth Charact. Mater. 2009, 55, 22. https://doi.org/10.1016/j.pcrysgrow.2008.08.003
  36. Cornu, C.; Bonardet, J. L.; Casale, S.; Davidson, A.; Abramson, S.; Andre, G.; Porcher, F.; Grcic, I.; Tomasic, V.; Vujevic, D.; Koprivanac, N. J. Phys. Chem. C 2012, 116, 3437. https://doi.org/10.1021/jp2038625
  37. Eswaramoorthi, I.; Dalai, A. K. Int. J. Hydrogen Energy 2009, 34, 2580. https://doi.org/10.1016/j.ijhydene.2009.01.029
  38. Shi, X.; Wu, Y.; Yi, H.; Rui, G.; Li, P.; Yang, M.; Wang, G. Energies 2011, 4, 669. https://doi.org/10.3390/en4040669
  39. Sing, K. S. W. Pure Appl. Chem. 1982, 54, 2201. https://doi.org/10.1351/pac198254112201
  40. Grieken, R. V.; Calleja, G.; Stucky, G. D.; Melero, J. A.; Garcia, R. A.; Iglesias, J. Langmuir 2003, 19, 3966. https://doi.org/10.1021/la026970c
  41. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024. https://doi.org/10.1021/ja974025i
  42. Khodakov, A. Y.; Bechara, R.; Griboval-Constant, A. Appl. Catal. A: Gen. 2003, 254, 273. https://doi.org/10.1016/S0926-860X(03)00489-7
  43. Delahaye, E.; Escax, V.; El Hassan, N.; Davidson, A.; Aquino, R.; Dupuis, V.; Perzynski, R.; Raikher, Y. L. J. Phys. Chem. B 2006, 110, 26001. https://doi.org/10.1021/jp0647075
  44. Mu, B.; Wang, T.; Wu, Z.; Shi, H.; Xue, D.; Liu, P. Colloids Surf. A: Physicochem. Eng. Aspects 2011, 375, 163. https://doi.org/10.1016/j.colsurfa.2010.11.081
  45. Gu, M.; Yue, B.; Bao, R.; He, H. Mater. Res. Bull. 2009, 44, 1422. https://doi.org/10.1016/j.materresbull.2008.11.018
  46. Mbaraka, I. K.; Shanks, B. H. J. Catal. 2006, 244, 78. https://doi.org/10.1016/j.jcat.2006.09.001

Cited by

  1. Regeneration of surface acid sites via mild oxidation on dehydration catalysts vol.6, pp.10, 2016, https://doi.org/10.1039/C6CY00510A
  2. Acetalization of glycerol with acetone over various metal-modified SBA-15 catalysts vol.8, pp.2, 2018, https://doi.org/10.1007/s13203-018-0197-6
  3. Dark fermentative biohydrogen production using pretreated Scenedesmus obliquus biomass under an integrated paradigm of biorefinery vol.47, pp.1, 2013, https://doi.org/10.1016/j.ijhydene.2021.10.018