References
- Gobin, O. C.; Wan, Y.; Zhao, D.; Kleitz, F.; Kaliaguine, S. J. Phys. Chem. C 2007, 111, 3053. https://doi.org/10.1021/jp0635765
- Zheng, X.; Dong, B.; Yuan, C.; Zhang, K.; Wang, X. J. Porous Mater. 2012, DOI 10.1007/s10934-012-9626-6.
- Kim, J. M.; Stucky, G. D. Chem. Commun. 2000, 1159.
- Kim, S. S.; Karkamkar, A.; Pinnavaia, T. J.; Kruk, M.; Jaroniec, M. J. Phys. Chem. B 2001, 105, 7663. https://doi.org/10.1021/jp010773p
- Newalkar, B. L.; Olanrewaju, J.; Komarneni, S. J. Phys. Chem. B 2001, 105, 8356. https://doi.org/10.1021/jp010889l
- Dong, X.; Shen, W.; Zhu, Y.; Xiong, L.; Shi, J. Adv. Funct. Mater. 2005, 15, 955. https://doi.org/10.1002/adfm.200400430
- Sauer, J.; Marlow, F.; Spliethoff, B.; Schüth, F. Chem. Mater. 2002, 14, 217. https://doi.org/10.1021/cm0111377
- Karimi, Z.; Mahjoub, A. R. Appl. Surf. Sci. 2010, 256, 4473. https://doi.org/10.1016/j.apsusc.2010.01.077
- Shukla, P.; Wang, S.; Sun, H.; Ang, H. M.; Tade, M. Chem. Eng. J. 2010, 164, 255. https://doi.org/10.1016/j.cej.2010.08.061
- Zhang, X.; Yuan, C.; Li, M.; Gao, B.; Wang, X.; Zheng, X. J. Non- Cryst. Solids 2009, 355, 2209. https://doi.org/10.1016/j.jnoncrysol.2009.08.007
- Nozaki, C.; Lugmair, C. G.; Bell, A. T.; Tilley, T. D. J. Am. Chem. Soc. 2002, 124, 13194. https://doi.org/10.1021/ja020388t
- Li, Y.; Zhang, W.; Zhang, L.; Yang, Q.; Wei, Z.; Feng, Z.; Li, C. J. Phys. Chem. B 2004, 108, 9739. https://doi.org/10.1021/jp049824j
- Xiu, T.; Liu, Q.; Wang, J. J. Mater. Res. 2007, 22, 1834. https://doi.org/10.1557/jmr.2007.0251
- Liu, C. Y.; Chen, C. F.; Leu, J. P.; Lin, Y. C. J. Sol-Gel Sci. Techn. 2007, 43, 47. https://doi.org/10.1007/s10971-007-1534-x
- Polshettiwar, V.; Varma, R. S. Green Chem. 2010, 12, 743. https://doi.org/10.1039/b921171c
- Li, Y.; Feng, Z.; Lian, Y.; Sun, K.; Zhang, L.; Jia, G.; Yang, Q.; Li, C. Micro. Meso. Mater. 2005, 84, 41. https://doi.org/10.1016/j.micromeso.2005.05.021
- Liu, Y.; Lotero, E.; Goodwin, J. G. J. Mol. Catal. A: Chem. 2006, 245, 132. https://doi.org/10.1016/j.molcata.2005.09.049
- Choi, J. I.; Hong, W. H.; Chang, H. N. Int. J. Chem. Kinet. 1996, 28, 37. https://doi.org/10.1002/(SICI)1097-4601(1996)28:1<37::AID-KIN5>3.0.CO;2-N
- Sanz, M. T.; Murga, R.; Beltran, S.; Cabezas, J. L.; Coca, J. Ind. Eng. Chem. Res. 2002, 41, 512. https://doi.org/10.1021/ie010454k
- Sanz, M. T.; Murga, R.; Beltran, S.; Cabezas, J. L.; Coca, J. Ind. Eng. Chem. Res. 2004, 43, 2049. https://doi.org/10.1021/ie034031p
- Erdem, B.; Kara, A. React. Funct. Polym. 2011, 71, 219. https://doi.org/10.1016/j.reactfunctpolym.2010.12.003
- Zhu, H.; Shanks, B. H.; Heindel, T. J. Ind. Eng. Chem. Res. 2008, 47, 7881. https://doi.org/10.1021/ie800238w
- Lai, D.; Deng, L.; Li, J.; Liao, B.; Guo, Q.; Fu, Y. ChemSusChem 2011, 4, 55. https://doi.org/10.1002/cssc.201000300
- Van Rhijn, W. M.; De Vos, D. E.; Sels, B. F.; Bossaert, W. D.; Jacobs, P. A. Chem. Commun. 1998, 317.
- Kureshy, R. I.; Ahmad, I.; Pathak, K.; Khan, N. H.; Abdi, S. H. R.; Jasra, R. V. Catal. Commun. 2009, 10, 572. https://doi.org/10.1016/j.catcom.2008.10.035
- Jackson, M. A.; Appell, M. Appl. Catal. A: Gen. 2010, 373, 90. https://doi.org/10.1016/j.apcata.2009.11.002
- Shen, J. G. C.; Herman, R. G.; Klier, K. J. Phys. Chem. B 2002, 106, 9975. https://doi.org/10.1021/jp020131h
- Margolese, D.; Melero, J. A.; Christiansen, S. C.; Chmelka, B. F.; Stucky, G. D. Chem. Mater. 2000, 12, 2448. https://doi.org/10.1021/cm0010304
- Hermida, L.; Abdullah, A. Z.; Mohamed, A. R. J. Porous Mater. 2012, 19, 835. https://doi.org/10.1007/s10934-011-9538-x
- Mayani, S. V.; Mayani, V. J.; Kim, S. W. Bull. Korean Chem. Soc. 2012, 33, 3009. https://doi.org/10.5012/bkcs.2012.33.9.3009
- Zheng, Y.; Li, J.; Zhao, N.; Wei, W.; Sun, Y. Micro. Meso. Mater. 2006, 92, 195. https://doi.org/10.1016/j.micromeso.2006.01.011
- Citak, A.; Erdem, B.; Erdem, S.; Oksuzo lu, R. M. J. Colloid Interface Sci. 2012, 369, 160. https://doi.org/10.1016/j.jcis.2011.11.070
- Yixin, Q.; Shaojun, P.; Shui, W.; Zhiqiang, Z.; Jidong, W. Chin. J. Chem. Eng. 2009, 17, 773. https://doi.org/10.1016/S1004-9541(08)60276-1
- Lim, M. H.; Blanford, C. F.; Stein, A. Chem. Mater. 1998, 10, 467. https://doi.org/10.1021/cm970713p
- Teja, A. S.; Koh, P. Y. Prog. Cryst. Growth Charact. Mater. 2009, 55, 22. https://doi.org/10.1016/j.pcrysgrow.2008.08.003
- Cornu, C.; Bonardet, J. L.; Casale, S.; Davidson, A.; Abramson, S.; Andre, G.; Porcher, F.; Grcic, I.; Tomasic, V.; Vujevic, D.; Koprivanac, N. J. Phys. Chem. C 2012, 116, 3437. https://doi.org/10.1021/jp2038625
- Eswaramoorthi, I.; Dalai, A. K. Int. J. Hydrogen Energy 2009, 34, 2580. https://doi.org/10.1016/j.ijhydene.2009.01.029
- Shi, X.; Wu, Y.; Yi, H.; Rui, G.; Li, P.; Yang, M.; Wang, G. Energies 2011, 4, 669. https://doi.org/10.3390/en4040669
- Sing, K. S. W. Pure Appl. Chem. 1982, 54, 2201. https://doi.org/10.1351/pac198254112201
- Grieken, R. V.; Calleja, G.; Stucky, G. D.; Melero, J. A.; Garcia, R. A.; Iglesias, J. Langmuir 2003, 19, 3966. https://doi.org/10.1021/la026970c
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024. https://doi.org/10.1021/ja974025i
- Khodakov, A. Y.; Bechara, R.; Griboval-Constant, A. Appl. Catal. A: Gen. 2003, 254, 273. https://doi.org/10.1016/S0926-860X(03)00489-7
- Delahaye, E.; Escax, V.; El Hassan, N.; Davidson, A.; Aquino, R.; Dupuis, V.; Perzynski, R.; Raikher, Y. L. J. Phys. Chem. B 2006, 110, 26001. https://doi.org/10.1021/jp0647075
- Mu, B.; Wang, T.; Wu, Z.; Shi, H.; Xue, D.; Liu, P. Colloids Surf. A: Physicochem. Eng. Aspects 2011, 375, 163. https://doi.org/10.1016/j.colsurfa.2010.11.081
- Gu, M.; Yue, B.; Bao, R.; He, H. Mater. Res. Bull. 2009, 44, 1422. https://doi.org/10.1016/j.materresbull.2008.11.018
- Mbaraka, I. K.; Shanks, B. H. J. Catal. 2006, 244, 78. https://doi.org/10.1016/j.jcat.2006.09.001
Cited by
- Regeneration of surface acid sites via mild oxidation on dehydration catalysts vol.6, pp.10, 2016, https://doi.org/10.1039/C6CY00510A
- Acetalization of glycerol with acetone over various metal-modified SBA-15 catalysts vol.8, pp.2, 2018, https://doi.org/10.1007/s13203-018-0197-6
- Dark fermentative biohydrogen production using pretreated Scenedesmus obliquus biomass under an integrated paradigm of biorefinery vol.47, pp.1, 2013, https://doi.org/10.1016/j.ijhydene.2021.10.018