DOI QR코드

DOI QR Code

Synthesis of Composite Particles with Fe3O4 core and Ag Shell for the Development of Fingerprints

  • Zhang, Ling-Yan (Forensic Identification Center, College of Criminal Investigation, Southwest University of Political Science and Law) ;
  • Chu, Ting (Forensic Identification Center, College of Criminal Investigation, Southwest University of Political Science and Law)
  • Received : 2013.01.04
  • Accepted : 2013.02.18
  • Published : 2013.05.20

Abstract

The $Fe_3O_4$-core and Ag-shell ($Fe_3O_4@Ag$ nanoeggs) were prepared through the encapsulation of 3-aminopropyltriethoxysilane-coated magnetite nanoparticle in nano-Ag shell by a simple chemically controlled procedure. The $Fe_3O_4@Ag$ nanoeggs were characterized by scanning electron microscopy, transmission electron microscopy, UV-vis spectrum and superconducting quantum interference device magnetometer, respectively. A detailed analysis is provided of how the hydrolysis and condensation of 3-aminopropyltriethoxysilane and the pH value are vital in fabricating the $Fe_3O_4@Ag$ nanoeggs. The prepared $Fe_3O_4@Ag$ nanoeggs possessed uniform size, improved monodispersity, stability against aggregation and high magnetization, which were utilized for the detection of latent fingerprints deposited onto different surfaces. The experimental results showed that the latent fingerprints developed with the $Fe_3O_4@Ag$ nanoeggs powders exhibited excellent ridge details with minimal background staining.

Keywords

References

  1. Leem, G.; Sarangi, S.; Zhang, S.; Rusakova, I.; Brazdeikis, A.; Litvinov, D.; Lee, T. R. Cryst. Growth Des. 2009, 9, 32. https://doi.org/10.1021/cg8009833
  2. Schwarz, L. J. Forensic Sci. 2009, 54, 1323. https://doi.org/10.1111/j.1556-4029.2009.01168.x
  3. Jones, B. J.; Reynolds, A. J.; Richardson, M.; Sears, V. G. Science and Justice 2010, 50, 150. https://doi.org/10.1016/j.scijus.2009.08.001
  4. Yu, Q. Z.; Shi, M. M.; Cheng, Y. N.; Wang, M.; Chen, H. Z. Nanotechnology 2008, 19, 1.
  5. Shin, K. S.; Choi, J. Y.; Park, C. S.; Jang, H. J.; Kim, K. Catal. Lett. 2009, 133, 1. https://doi.org/10.1007/s10562-009-0124-7
  6. Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. J. Phys. D: Appl. Phys. 2003, 36, R167. https://doi.org/10.1088/0022-3727/36/13/201
  7. Lens, P. N. L.; Hemminga, M. A. Biodegradation 1998, 9, 393. https://doi.org/10.1023/A:1008316031421
  8. Koch, C. C. Nanostructured Materials; Processing, Properties, and Applications: William Andrew Publishing: Norwich, NY, 2006.
  9. Park, S. E.; Park, M. Y.; Han, P. K.; Lee, S. W. Bull. Korean Chem. Soc. 2006, 27, 1341. https://doi.org/10.5012/bkcs.2006.27.9.1341
  10. Hesham, M. Z.; Saleh, A. H. Journal of Materials Research 2012, 27, 2798. https://doi.org/10.1557/jmr.2012.310
  11. Shieh, D. B.; Cheng, F. Y.; Su, C. H.; Yeh, C. S. etc. Biomaterials 2005, 26, 7183. https://doi.org/10.1016/j.biomaterials.2005.05.020
  12. Park, S. E.; Lee, J. W.; Haam, S. J.; Lee, S. W. Bull. Korean Chem, Soc. 2009, 30, 869. https://doi.org/10.5012/bkcs.2009.30.4.869
  13. Maceira, V. S.; Spasova, M.; Farle, M. Adv. Funct. Mater. 2005, 15, 1036. https://doi.org/10.1002/adfm.200400469
  14. Caruntu, D.; Cushing, B. L.; Caruntu, G.; O'Connor, J. C. Chem. Mater. 2005, 17, 3398. https://doi.org/10.1021/cm050280n
  15. Wu, W.; He, Q. G.; Chen, H.; Tang, J. X.; Nie, L. B. Nanotechnology 2007, 18, 1.
  16. Huang, W. C.; Tsai, P. J.; Chen, Y. C. Small 2009, 1, 51.
  17. Zhang, L. Y.; Zhou, X. F.; Chu, T. Science China Chemistry 2013, 56, 551. https://doi.org/10.1007/s11426-012-4764-x
  18. Stober, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62. https://doi.org/10.1016/0021-9797(68)90272-5
  19. Savka, I. S.; Huo, F. W.; Lee, J. S.; Mirkin, C. A. J. Am. Chem. Soc. 2005, 127, 15362. https://doi.org/10.1021/ja055056d
  20. Jennifer, L. L.; David, A. F.; Matthew, B. S.; Peter, S.; Mary, E. W. Nano Letters 2004, 719.
  21. Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Nano Letters 2005, 379.
  22. Zhang, Z. B.; Duan, H. F.; Li, S. G.; Lin, Y. J. Langmuir 2010, 26, 6676. https://doi.org/10.1021/la904010y
  23. Hajdu, A.; Illes, E.; Tombacz, E.; Borbath, I. Colloids and Surfaces A: Physicochemical. Eng. Aspects 2009, 347, 104. https://doi.org/10.1016/j.colsurfa.2008.12.039
  24. Stauffer, E.; Becue, A.; Singh, K. V.; Thampi, K. R.; Champod, C.; Margot, P. Forensic Sci. Int. 2007, 168, 1. https://doi.org/10.1016/j.forsciint.2006.05.037
  25. Sodhi, G. S.; Kaur, J. Forensic Sci. Int. 2001, 120, 172. https://doi.org/10.1016/S0379-0738(00)00465-5
  26. Choi, M. J.; Smoother, T.; Martin, A.; McDonagh, A. M. Forensic Sci. Int. 2007, 173, 154. https://doi.org/10.1016/j.forsciint.2006.09.014
  27. Thonglon, T.; Sc, B.; Chaikum, N. J. Forensic Sci. 2010, 55, 1343. https://doi.org/10.1111/j.1556-4029.2010.01432.x

Cited by

  1. Emerging fields in fingermark (meta)detection – a critical review vol.8, pp.45, 2016, https://doi.org/10.1039/C6AY02496C
  2. Ultrasonic-Microwave Heating Synthesis and Latent Fingerprint Development of Gold Nanoclusters vol.90, pp.6, 2017, https://doi.org/10.1246/bcsj.20170016
  3. Protein coated gold nanoparticles as template for the directed synthesis of highly fluorescent gold nanoclusters vol.29, pp.16, 2018, https://doi.org/10.1088/1361-6528/aaae47
  4. The Fabrication of an Amperometric Immunosensor Based on Double-Layer 2D-Network (3-Mercaptopropyl)trimethoxysilane Polymer and Platinum-Prussian Blue Hybrid Film vol.91, pp.3, 2018, https://doi.org/10.1246/bcsj.20170266
  5. @GSH-Pt NCs Core-Shell Microspheres for Latent Fingerprint Detection vol.91, pp.12, 2018, https://doi.org/10.1246/bcsj.20180168
  6. Nanoparticles used for fingermark detection-A comprehensive review vol.1, pp.5, 2019, https://doi.org/10.1002/wfs2.1341
  7. Zinc oxide quantum dots embedded in hydrophobic silica particles for latent fingermarks visualization based on time-gated luminescence measurements vol.8, pp.2, 2013, https://doi.org/10.1088/2050-6120/ab6f24
  8. The Development of Latent Fingermarks for Visualization by Using AuNPs@AuNCs Core/Shell Nanoparticles vol.15, pp.10, 2013, https://doi.org/10.1142/s1793292020501325