DOI QR코드

DOI QR Code

Effect of Carbon Matrix on Electrochemical Performance of Si/C Composites for Use in Anodes of Lithium Secondary Batteries

  • Lee, Eun Hee (Department of Chemical Engineering, Korea University of Technology and Education (KOREATECH)) ;
  • Jeong, Bo Ock (Department of Chemical Engineering, Korea University of Technology and Education (KOREATECH)) ;
  • Jeong, Seong Hun (Department of Chemical Engineering, Korea University of Technology and Education (KOREATECH)) ;
  • Kim, Tae Jeong (Department of Chemical Engineering, Korea University of Technology and Education (KOREATECH)) ;
  • Kim, Yong Shin (Department of Applied Chemistry and Graduate School of Bio-Nano Technology, Hanyang University) ;
  • Jung, Yongju (Department of Chemical Engineering, Korea University of Technology and Education (KOREATECH))
  • Received : 2012.12.14
  • Accepted : 2013.02.14
  • Published : 2013.05.20

Abstract

To investigate the influence of the carbon matrix on the electrochemical performance of Si/C composites, four types of Si/C composites were prepared using graphite, petroleum coke, pitch and sucrose as carbon precursors. A ball mill was used to prepare Si/C blends from graphite and petroleum coke, whereas a dispersion technique was used to fabricate Si/C composites where Si was embedded in disordered carbon matrix derived from pitch or sucrose. The Si/pitch-based carbon composite showed superior Si utilization (96% in the first cycle) and excellent cycle retention (70% after 40 cycles), which was attributed to the effective encapsulation of Si and the buffering effect of the surrounding carbon matrix on the silicon particles.

Keywords

References

  1. Tarascon, J.-M.; Armand, M. Nature 2001, 414, 359. https://doi.org/10.1038/35104644
  2. Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Angew. Chem. Int. Ed. 2008, 47, 2. https://doi.org/10.1002/anie.200790256
  3. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nature 2000, 407, 496. https://doi.org/10.1038/35035045
  4. Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawk, Y.; Miyasaka, T. Science 1997, 276, 1395. https://doi.org/10.1126/science.276.5317.1395
  5. Yu, Y.; Chen, C.-H.; Shi, Y. Adv. Mater. 2007, 19, 993. https://doi.org/10.1002/adma.200601667
  6. Ng, S.-H.; Wang, J.; Wexler, D.; Konstantinov, K.; Guo, Z.-P.; Liu, H.-K. Angew. Chem. Int. Ed. 2006, 45, 6896. https://doi.org/10.1002/anie.200601676
  7. Yang, X.; Zhang, P.; Wen, Z.; Zhang, L. J. Alloys Compd. 2010, 496, 403. https://doi.org/10.1016/j.jallcom.2010.02.035
  8. Zuo, P.; Yin, G.; Yang, Z.; Wang, Z.; Cheng, X.; Jia, D.; Du, C. Mater. Chem. Phys. 2009, 115, 757. https://doi.org/10.1016/j.matchemphys.2009.02.036
  9. Gu, P.; Cai, R.; Zhou, Y.; Shao, Z. Electrochim. Acta 2010, 55, 3876. https://doi.org/10.1016/j.electacta.2010.02.006
  10. Wen, Z. S.; Yang, J.; Wang, B. F.; Wang, K.; Liu, Y. Electrochem. Commun. 2003, 5, 165. https://doi.org/10.1016/S1388-2481(03)00009-2
  11. Ahn, D.; Raj, R. J. Power Sources 2011, 196, 2179. https://doi.org/10.1016/j.jpowsour.2010.09.086
  12. Luo, Z.; Fan, D.; Liu, X.; Mao, H.; Yao, C.; Deng, Z. J. Power Sources 2009, 189, 16. https://doi.org/10.1016/j.jpowsour.2008.12.068
  13. Guo, Z. P.; Milin, E.; Wang, J. Z.; Chen, J.; Liu, H. K. J. Electrochem. Soc. 2005, 152, A2211. https://doi.org/10.1149/1.2051847
  14. Si, Q.; Hanai, K.; Imanishi, N.; Kubo, M.; Hirano, A.; Takeda, Y.; Yamamoto, O. J. Power Sources 2009, 189, 761. https://doi.org/10.1016/j.jpowsour.2008.08.007
  15. Guo, Z. P.; Jia, D. Z.; Yuan, L.; Liu, H. K. J. Power Sources 2006, 159, 332. https://doi.org/10.1016/j.jpowsour.2006.04.043
  16. Kim, I.-S.; Kumta, P. N. J. Power Sources 2004, 136, 145. https://doi.org/10.1016/j.jpowsour.2004.05.016
  17. Lee, J.-H.; Kim, W.-J.; Kim, J.-Y.; Lim, S.-H.; Lee, S.-M. J. Power Sources 2008, 176, 353. https://doi.org/10.1016/j.jpowsour.2007.09.119
  18. Yang, J. B.; Wang, F.; Wang, K.; Liu, Y.; Xie, J. Y.; Wen, Z. S. Electrochem. Solid-State Lett. 2003, 6, A154. https://doi.org/10.1149/1.1585251
  19. Zuo, P.; Yin, G.; Ma, Y. Electrochim. Acta 2007, 52, 4878. https://doi.org/10.1016/j.electacta.2006.12.061
  20. Hwang, S. S.; Cho, C. G.; Kim, H. Electrochim. Acta 2010, 55, 3236. https://doi.org/10.1016/j.electacta.2010.01.044
  21. Jung, Y.; Suh, M. C.; Lee, H.; Kim, M.; Lee, S.-I. S.; Shim, C.; Kwak, J. J. Electrochem. Soc. 1997, 144, 4280.
  22. Zheng, T.; Xue, J. S.; Dahn, J. R. Chem. Mater. 1996, 8, 389. https://doi.org/10.1021/cm950304y
  23. Obrovac, M. N.; Christensen, L. Electrochem. Solid State Lett. 2004, 7, A93. https://doi.org/10.1149/1.1652421

Cited by

  1. Sawtooth- or Pyramidal-patterned Si Negative Electrode Fabricated by Micro-Electro-Mechanical Systems for Li-Ion Secondary Battery vol.37, pp.11, 2016, https://doi.org/10.1002/bkcs.10961
  2. One-to-One Comparison of Graphite-Blended Negative Electrodes Using Silicon Nanolayer-Embedded Graphite versus Commercial Benchmarking Materials for High-Energy Lithium-Ion Batteries vol.7, pp.15, 2017, https://doi.org/10.1002/aenm.201700071
  3. Relationship between the Properties and Cycle Life of Si/C Composites as Performance-Enhancing Additives to Graphite Electrodes for Li-Ion Batteries vol.164, pp.2, 2017, https://doi.org/10.1149/2.0701702jes
  4. Walnut-structure Si–G/C materials with high coulombic efficiency for long-life lithium ion batteries vol.8, pp.48, 2018, https://doi.org/10.1039/C8RA04804E
  5. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries vol.1, pp.None, 2013, https://doi.org/10.1038/nenergy.2016.113
  6. Pitch-based carbon/nano-silicon composite, an efficient anode for Li-ion batteries vol.9, pp.19, 2013, https://doi.org/10.1039/c9ra00437h
  7. Chessboard-Like Silicon/Graphite Anodes with High Cycling Stability toward Practical Lithium-Ion Batteries vol.4, pp.1, 2013, https://doi.org/10.1021/acsaem.0c02621