DOI QR코드

DOI QR Code

NF-κB Inhibition and PPAR Activation by Phenolic Compounds from Hypericum perforatum L. Adventitious Root

  • Li, Wei (College of Pharmacy, Chungnam National University) ;
  • Ding, Yan (College of Pharmacy, Chungnam National University) ;
  • Quang, Tran Hong (College of Pharmacy, Chungnam National University) ;
  • Nguyen, Thi Thanh Ngan (College of Pharmacy, Chungnam National University) ;
  • Sun, Ya Nan (College of Pharmacy, Chungnam National University) ;
  • Yan, Xi Tao (College of Pharmacy, Chungnam National University) ;
  • Yang, Seo Young (College of Pharmacy, Chungnam National University) ;
  • Choi, Chun Whan (College of Pharmacy, Chungnam National University) ;
  • Lee, Eun Jung (Research Center for the Development of Advanced Horticultural Technology, Chungbuk National University) ;
  • Paek, Kee Yoeup (Research Center for the Development of Advanced Horticultural Technology, Chungbuk National University) ;
  • Kim, Young Ho (College of Pharmacy, Chungnam National University)
  • Received : 2012.12.27
  • Accepted : 2013.02.09
  • Published : 2013.05.20

Abstract

A new compound, perforaphenonoside A (1), along with 11 known compounds (2-12) were isolated from a methanol extract of adventitious roots of Hypericum perforatum. Their chemical structures were elucidated using chemical and physical methods as well as comparison of NMR and mass spectral data with previously reported data. Their inhibition of NF-${\kappa}B$ and activation of PPAR was measured in HepG2 cells using a luciferase reporter system. Among the compounds 3, 6, 7 and 12 inhibited NF-${\kappa}B$ activation stimulated by TNF${\alpha}$ in a dose-dependent manner, with $IC_{50}$ values ranging from 0.85 to $8.10{\mu}M$. Moreover, compounds 1-3, 7, 11 and 12 activated the transcriptional activity of PPARs in a dose-dependent manner, with $EC_{50}$ values ranging from 7.3 to $58.7{\mu}M$. The transactivational effects of compounds 1-3, 7, 11 and 12 were evaluated on three individual PPAR subtypes. Among them, compound 2 activated $PPAR{\alpha}$ transcriptional activity, with 153.97% stimulation at $10{\mu}M$, while compounds 1, 2 and 11 exhibited transcriptional activity of $PPAR{\gamma}$, with stimulation from 124.76% to 126.91% at $10{\mu}M$.

Keywords

References

  1. Robson, N. K. B. Cambridge University Press: London 1968, 2, 261.
  2. Butterweck, V. CNS Drugs 2003, 17, 539. https://doi.org/10.2165/00023210-200317080-00001
  3. Miller, A. L. Altern. Med. Rev. 1998, 3, 18.
  4. Hu, Z. P.; Yang, X. X.; Chan, S. Y.; Xu, A. L.; Duan, W.; Zhu, Y. Z.; Sheu, F. S.; Boelsterli, U. A.; Chan, E.; Zhang, Q.; Wang, J. C.; Ee, P. L.; Koh, H. L.; Huang, M.; Zhou, S. F. Toxicol. Appl. Pharmacol. 2006, 216, 225. https://doi.org/10.1016/j.taap.2006.05.020
  5. Birt, D. F.; Widrlechner, M. P.; Hammer, K. D.; Hillwig, M. L.; Wei, J.; Kraus, G. A.; Murphy, P. A.; McCoy, J.; Wurtele, E. S.; Neighbors, J. D.; Wiemer, D. F.; Maury, W. J.; Price, J. P. Pharm. Biol. 2009, 47, 774. https://doi.org/10.1080/13880200902988645
  6. Conceicao, L. F. R.; Ferreres, F.; Tavares, R. M.; Dias, A. C. P. Phytochemistry 2006, 67, 149. https://doi.org/10.1016/j.phytochem.2005.10.017
  7. Jeong, J. A.; Wu, C. H.; Murthy, H. N.; Hahn, E. J.; Paek, K. Y. Biotechnol Bioprocess Eng. 2009, 14, 91. https://doi.org/10.1007/s12257-007-0142-5
  8. Nahrstedt, A.; Butterweck, V. J. Nat. Prod. 2010, 28, 1015.
  9. Muller, W. E. Pharmacol. Res. 2003, 47, 101. https://doi.org/10.1016/S1043-6618(02)00266-9
  10. Medina, M. A.; Martínez-Poveda, B.; Amores-Sánchez, M. I.; Quesada, A. R. Life Sc. 2006, 79, 105. https://doi.org/10.1016/j.lfs.2005.12.027
  11. Fotie, J.; Bohle, D. S. Anti-Infective Agents Med. Chem. 2006, 5, 15. https://doi.org/10.2174/187152106774755563
  12. Tocci, N.; Ferrari, F.; Santamaria, A. R.; Valletta, A.; Rovardi, I.; Pasqua, G. Nat. Prod. Res. 2010, 24, 286. https://doi.org/10.1080/14786410903006353
  13. Baldwin, A. S. J. Clin. Invest. 2001, 107, 3. https://doi.org/10.1172/JCI11891
  14. Pande, V.; Ramos, M. J. Curr. Med. Chem. 2005, 12, 357. https://doi.org/10.2174/0929867053363180
  15. Moraes, L. A.; Piqueras, L.; Bishop-Bailey, D. Pharmacol. Ther. 2006, 110, 371. https://doi.org/10.1016/j.pharmthera.2005.08.007
  16. Sharma, A. M.; Staels, B. J. Clin. Endocrinol. Metab. 2007, 92, 386. https://doi.org/10.1210/jc.2006-1268
  17. Berger, J.; Moller, D. E. Annu. Rev. Med. 2002, 53, 409. https://doi.org/10.1146/annurev.med.53.082901.104018
  18. Balint, B. L.; Nagy, L. Endocr. Metab. Immune Disord. Drug Targets 2006, 6, 33. https://doi.org/10.2174/187153006776056620
  19. Barish, G. D.; Narkar, V. A.; Evans, R. M. J. Clin. Invest. 2006, 116, 590. https://doi.org/10.1172/JCI27955
  20. Haluzik, M. M.; Haluzik, M. Physiol. Res. 2006, 55, 115.
  21. Kuroda, M.; Mimaki, Y.; Honda, S.; Tanaka, H.; Yokota, S.; Mae, T. Bioorg. Med. Chem. 2010, 18, 962. https://doi.org/10.1016/j.bmc.2009.11.027
  22. Nedialkov, P. T.; Kitanov, G. M. Phytochemistry 2002, 59, 867. https://doi.org/10.1016/S0031-9422(01)00484-8
  23. Terreaux, C.; Maillard, M.; Gupta, M. P.; Hostettmann, K. Phytochemistry 1995, 40, 1791. https://doi.org/10.1016/0031-9422(95)00483-N
  24. Abou-Shoer, M.; Suwanborirux, K.; Habib, A. A. M.; Chang, C. J.; Cassady, J. M. Phytochemistry 1993, 34, 1413. https://doi.org/10.1016/0031-9422(91)80040-8
  25. Walia, S.; Mukerjee, S. K. Phytochemistry 1984, 23, 1816. https://doi.org/10.1016/S0031-9422(00)83507-4
  26. Marques, V. L.; De Oliveira, F. M.; Conserva, L. M.; Brito, R. G.; Guilhon, G. M. Phytochemistry 2000, 55, 815. https://doi.org/10.1016/S0031-9422(00)00296-X
  27. Schaufelberger, D.; Hostettmann, K. Planta Med. 1988, 54, 219. https://doi.org/10.1055/s-2006-962408
  28. Lin, W. H.; Deng, Z. W.; Lei, H. M.; Fu, H. Z.; Li, J. J. Asian Nat. Prod. Res. 2002, 4, 287. https://doi.org/10.1080/1028602021000049087
  29. Bajaj, K. L.; Anan, T.; Tsushida, T.; Ikegaya, K. Agric. Biol. Chem. 1987, 51, 1767. https://doi.org/10.1271/bbb1961.51.1767
  30. Yoshikawa, K.; Eiko, K.; Mimura, N.; Kondo, Y.; Arihara, S. J. Nat. Prod. 1998, 61, 786. https://doi.org/10.1021/np9800396
  31. Fukui, H.; Koshimizu, K.; Yamazaki, Y.; Usuda, S. Agric. Biol. Chem. 1977, 41, 189. https://doi.org/10.1271/bbb1961.41.189
  32. Klick, S.; Herrmann, K. Phytochemistry 1988, 27, 2177. https://doi.org/10.1016/0031-9422(88)80121-3
  33. Jiang, H. Z.; Quan, X. F.; Tian, W. X.; Hu, J. M.; Wang, P. C.; Huang, S. Z.; Cheng, Z. Q.; Liang, W. J.; Zhou, J.; Ma, X. F.; Zhao, Y. X. Bioorg. Med. Chem. Lett. 2010, 20, 6045. https://doi.org/10.1016/j.bmcl.2010.08.061
  34. Weinstein, D. S.; Chen, P.; Dhar, T. G. M.; Duan, J.; Gong, H.; Jiang, B.; Yang, B. V.; Doweyko, A. M. U.S. Pat. Appl. Publ. 2009, US 20090075995 A1 20090319.
  35. Cui, X. H.; Murthy, H. N.; Jin, Y. X.; Yim, Y. H.; Kim, J. Y.; Paek, K. Y. Bioresour. Technol. 2011, 102, 10072. https://doi.org/10.1016/j.biortech.2011.08.044
  36. Kim, K. K.; Park, K. S.; Song, S. B.; Kim, K. E. Mol. Carcinog. 2010, 49, 259.
  37. Shearer, B. G.; Billin, A. N. Biochim. Biophys. Acta, Mol. Cell. Biol. Lipids 2007, 1771, 1082. https://doi.org/10.1016/j.bbalip.2007.05.005

Cited by

  1. Cell suspension culture of Orostachys cartilaginous in bioreactor systems for bioactive compound production and evaluation of their antioxidant properties vol.39, pp.3, 2017, https://doi.org/10.1007/s11738-017-2374-0
  2. Cratoxylum formosum (Jack) Dyer ssp. pruniflorum (Kurz) Gogel. (Hóng yá mù) extract induces apoptosis in human hepatocellular carcinoma HepG2 cells through caspase-dependent pa vol.9, pp.None, 2013, https://doi.org/10.1186/1749-8546-9-12
  3. Constituents of Talisia nervosa with Potential Utility against Metabolic Syndrome vol.14, pp.1, 2013, https://doi.org/10.1177/1934578x1901400114
  4. Advances in Research on Chemical Constituents and Their Biological Activities of the Genus Actinidia vol.11, pp.6, 2013, https://doi.org/10.1007/s13659-021-00319-8