DOI QR코드

DOI QR Code

Enhanced Photocatalytic Activity of TiO2 Modified by e-Beam Irradiation

  • Received : 2012.08.21
  • Accepted : 2013.02.08
  • Published : 2013.05.20

Abstract

The influence of electron beam irradiation on photocatalytic activity of $TiO_2$ thin films was investigated. $TiO_2$ thin films were prepared by anodization of Ti foil, and they were then subjected to an 1 MeV electron beam. Changes in physical properties and photocatalytic activity of $TiO_2$ before and after e-beam irradiation were investigated. The crystallinity of the synthesized materials was investigated by X-ray diffraction, and the oxidation states of both titanium and oxygen were determined by X-ray photoelectron spectroscopy (XPS). The density of donor ($N_d$) and flat band potential ($E_{fb}$) were investigated by Mott-Schottky analysis, and photocurrent was measured under a 1kW Xenon lamp illumination. After e-beam irradiation, significant change of Ti oxidation state was observed. $Ti^{3+}/Ti^{4+}$ ratio increased mainly due to the surface reduction by electron, and photocurrent was observed to increase with e-beam irradiation.

Keywords

References

  1. Wu, Y.; Lu, G.; Li, S. J. Photochem. Photobiol. A-Chem. 2006, 181, 263. https://doi.org/10.1016/j.jphotochem.2005.12.007
  2. Nikaido, M.; Furuya, S.; Kakui, T.; Kamiya, H. Adv. Powder Technol. 2009, 20, 598. https://doi.org/10.1016/j.apt.2009.10.003
  3. Lo, C.; Hung, C.; Yuan, C.; Wu, J. Solar Energy Mater. Solar Cells. 2007, 91, 1765. https://doi.org/10.1016/j.solmat.2007.06.003
  4. Beranek, R.; Kisch, H. Electrochem. Commun. 2007, 9, 761. https://doi.org/10.1016/j.elecom.2006.11.011
  5. Colmenares, J.; Aramendia, M.; Marinas, A.; Marinas, J.; Urbano, F. Appl. Catal. A-Gen. 2006, 306, 120. https://doi.org/10.1016/j.apcata.2006.03.046
  6. Jing, L.; Sun, X.; Xin, B.; Wang, B.; Cai, W.; Fu, H. J. Solid State Chem. 2004, 177, 3375. https://doi.org/10.1016/j.jssc.2004.05.064
  7. Sharma, P.; Kumar, P.; Deva, D.; Shrivastav, R.; Dass, S.; Satsangi, V. R. Int. J. Hydrogen Energy 2010, 35, 10883. https://doi.org/10.1016/j.ijhydene.2010.07.016
  8. Jia, F.; Yao, Z.; Jiang, Z.; Li, C. Catal. Commun. 2011, 12, 497. https://doi.org/10.1016/j.catcom.2010.11.015
  9. Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. J. Phys. Chem. Solids 2002, 63, 1909. https://doi.org/10.1016/S0022-3697(02)00177-4
  10. Senthilkumaar, S.; Porkodi, K.; Vidyalakshmi, R. J. Photochem. Photobiol. A-Chem. 2005, 170, 225. https://doi.org/10.1016/j.jphotochem.2004.07.005
  11. Li, W.; Shi, E.; Fukuda, T. Cryst. Res. Technol. 2003, 38, 847. https://doi.org/10.1002/crat.200310103
  12. Hou, X.; Liu, A. Radiat. Phys. Chem. 2008, 77, 345. https://doi.org/10.1016/j.radphyschem.2007.04.003
  13. Chen, J.; Czayka, M.; Uribe, R. Radiat. Phys. Chem. 2005, 74, 31. https://doi.org/10.1016/j.radphyschem.2004.12.004
  14. Palombari, R.; Ranchella, M.; Rol, C.; Sebastiani, G. Solar Energy Mater. Solar Cells 2002, 71, 359. https://doi.org/10.1016/S0927-0248(01)00093-9
  15. Li, F.; Li, X. Chemosphere. 2002, 48, 1103. https://doi.org/10.1016/S0045-6535(02)00201-1
  16. Li, X.; Li, F.; Yang, C.; Ge, W. J. Photochem. Photobiol. A-Chem. 2001, 141, 209. https://doi.org/10.1016/S1010-6030(01)00446-4
  17. Wilhelm, S. M.; Yun, K. S.; Ballenger, L. W.; Hackerman, N. J. Electrochem. Soc. 1979, 126, 419. https://doi.org/10.1149/1.2129055
  18. Kennedy, J. H.; K. W. F., Jr. J. Electrochem. Soc. 1978, 125, 723. https://doi.org/10.1149/1.2131535
  19. Singh, A. P.; Kumari, S.; Shrivastav, R.; Dass, S.; Satsangi, V. R. J. Phys. D-Appl. Phys. 2009, 42, 085303. https://doi.org/10.1088/0022-3727/42/8/085303
  20. Jun, J.; Dhayal, M.; Shin, J.; Kim, J.; Getoff, N. Radiat. Phys. Chem. 2006, 75, 583. https://doi.org/10.1016/j.radphyschem.2005.10.015

Cited by

  1. Using Photoelectrochemistry vol.118, pp.23, 2014, https://doi.org/10.1021/jp4120964
  2. nanoparticles for long-wavelength visible light-photocatalytic killing of cancer cells vol.5, pp.121, 2015, https://doi.org/10.1039/C5RA19045B
  3. Facile synthesis of nano-crystalline anatase TiO2 and their applications in degradation of Direct blue 199 vol.27, pp.3, 2016, https://doi.org/10.1007/s10854-015-4061-5
  4. for Improved Visible-Light Photocatalytic Activity vol.8, pp.41, 2016, https://doi.org/10.1021/acsami.6b07000
  5. Immobilization of Fungal Cellulase on Calcium Alginate and Xerogel Matrix pp.1877-265X, 2018, https://doi.org/10.1007/s12649-018-0443-2
  6. Self-modification of titanium dioxide materials by Ti3+ and/or oxygen vacancies: new insights into defect chemistry of metal oxides vol.4, pp.27, 2013, https://doi.org/10.1039/c3ra47757f
  7. AgI/AgCl/H2WO4 Double Heterojunctions Composites: Preparation and Visible-Light Photocatalytic Performance vol.35, pp.2, 2013, https://doi.org/10.5012/bkcs.2014.35.2.441
  8. Analyzing of DSSCs Fabricated by Nb:TiO2 Characterized and Synthesized with Sol-Gel in the Magnetic Field vol.48, pp.5, 2013, https://doi.org/10.1007/s11664-019-07073-1
  9. Mesoporous V‐TiO 2 Catalysts with Crystalline Anatase‐Rutile Mixed Phases for Naphthalene Degradation vol.4, pp.44, 2013, https://doi.org/10.1002/slct.201902487
  10. Degradation of Direct Blue 1 through Heterogeneous Photocatalysis with TiO2 Irradiated with E-Beam vol.8, pp.9, 2013, https://doi.org/10.3390/pr8091181
  11. Structural Changes of TiO2 as a Result of Irradiation by E-Beam and X-Rays vol.142, pp.4, 2013, https://doi.org/10.1115/1.4046944