DOI QR코드

DOI QR Code

Synthesis and Characterization of New Macroporous SnO2 Foams

  • Choi, Moon-Hyung (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Paek, Seung-Min (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
  • Received : 2013.01.21
  • Accepted : 2013.02.09
  • Published : 2013.05.20

Abstract

Macroporous $SnO_2$ foam was successfully synthesized via a simple soft-chemical route by hybridization between alkylamine and tin(IV) oxide. According to X-ray diffraction (XRD) analysis, the as-prepared $SnO_2$ foam had a highly ordered lamella structure along the crystallographic c-axis, which transformed to a rutile phase after thermal treatment at $300^{\circ}C$. X-ray absorption spectroscopy (XAS) at the Sn K-edge revealed that $SnO_2$ particles in the hybrid material maintained their nanosized structure after hybridization with alkylamine. Scanning electron microscope (SEM) images clearly showed that the as-prepared $SnO_2$ foam had a macroporous structure. This synthetic route can be extended to the development of open frameworks with good electrochemical properties in battery applications.

Keywords

References

  1. Whittingham, M. S. Chem. Rev. 2004, 104, 4271. https://doi.org/10.1021/cr020731c
  2. Armand, M.; Tarascon, J.-M. Nature 2008, 451, 652. https://doi.org/10.1038/451652a
  3. Wu, Y. P.; Rahm, E.; Holze, R. J. Power Sources 2003, 114, 228. https://doi.org/10.1016/S0378-7753(02)00596-7
  4. Buqa, H.; Goers, D.; Holzapfel, M.; Spahr, M. E.; Novak, P. J. Electrochem. Soc. 2005, 152, A474. https://doi.org/10.1149/1.1851055
  5. Courtney, I. A.; Dahn, J. R. J. Electrochem. Soc. 1997, 144, 2045. https://doi.org/10.1149/1.1837740
  6. Guo, H.; Mao, R.; Yang, X. J.; Wang, S. X.; Chen, J. J. Power Sources 2012, 219, 280. https://doi.org/10.1016/j.jpowsour.2012.07.063
  7. Chen, J. S.; Archer, L. A.; Lou, X. W. J. Mater. Chem. 2011, 21, 9912. https://doi.org/10.1039/c0jm04163g
  8. Paek, S. M.; Yoo, E.; Honma, I. Nano Lett. 2009, 9, 72. https://doi.org/10.1021/nl802484w
  9. Brousse, T.; Retoux, R.; Herterich, U.; Schleich, D. M. J. Electrochem. Soc. 1998, 145, 1. https://doi.org/10.1149/1.1838201
  10. Deng, D.; Lee, J. Y. Chem. Mater. 2008, 20, 1841. https://doi.org/10.1021/cm7030575
  11. Zhao, N. H.; Wang, G. J.; Huang, Y.; Wang, B.; Yao, B. D.; Wu, Y. P. Chem. Mater. 2008, 20, 2612. https://doi.org/10.1021/cm703353y
  12. Chandrappa, G. T.; Steunou, N.; Livage, J. Nature 2002, 416, 702. https://doi.org/10.1038/416702a
  13. Paek, S. M.; Jung, H.; Park, M.; Lee, J. K.; Choy, J. H. Chem. Mater. 2005, 17, 3492. https://doi.org/10.1021/cm0477220
  14. Paek, S. M.; Jung, H.; Lee, Y. J.; Park, M.; Hwang, S. J.; Choy, J. H. Chem. Mater. 2006, 18, 1134. https://doi.org/10.1021/cm052201d
  15. Kang, J. H.; Paek, S. M.; Hwang, S. J.; Choy, J. H. J. Mater. Chem. 2010, 20, 2033. https://doi.org/10.1039/b918363a
  16. Kang, J. H.; Paek, S. M.; Choy, J. H. Bull. Kor. Chem. Soc. 2010, 31, 3675. https://doi.org/10.5012/bkcs.2010.31.12.3675
  17. Alba, M. D.; Castro, M. A.; Orta, M. M.; Pavon, E.; Pazos, M. C.; Rios, J. S. V. Langmuir 2011, 27, 9711. https://doi.org/10.1021/la200942u
  18. Cullity, B. D. Elements of X-Ray Diffraction, 2nd ed.; Addison-Wesley: Reading, MA, 1977.