DOI QR코드

DOI QR Code

Fluorescence Enhancement of 7-Diethylamino-4-methylcoumarin by Noncovalent Dipolar Interactions with Cucurbiturils

  • Park, Mee Ock (Department of Chemistry and Applied Chemistry, Daegu University) ;
  • Moon, Myung Gu (Department of Chemistry and Applied Chemistry, Daegu University) ;
  • Kang, T.J. (Department of Chemistry and Applied Chemistry, Daegu University)
  • Received : 2012.12.26
  • Accepted : 2013.02.07
  • Published : 2013.05.20

Abstract

We have investigated the complex forming behavior of cucurbit[6]urils(CB6) and cucurbit[7]urils(CB7) with 7-diethylamino-4-methylcoumarin(C460) in water. The electronic absorption maximum of C460 shows bathochromic shift with the addition of CB7 and fluorescence intensity is greatly increased, while CB6 has no noticeable effects on the spectroscopic properties of C460. It is noted that CB7 interacts more strongly with C460 than CB6 does. Fluorescence lifetime also significantly increased for the CB7 complex, which is attributed to reduced polarity surrounding C460 and/or C460 being in a restricted environment. The stoichiometry for the complex formation determined from the fluorescence titration measurement indicates that 2:1 complex in which two CB7 molecules bind to C460 is formed. Thus, two step equilibrium processes are suggested for the complex formation and the binding constants are estimated. The semi-empirical electronic structures calculations indicate that C460 is not included in the CB7 cavity but interacts noncovalently with the portal carbonyls of CB7.

Keywords

References

  1. Parvari, G.; Reany, O.; Keinan, E. Isr. J. Chem. 2011, 51, 646. https://doi.org/10.1002/ijch.201100048
  2. Masson, E.; Ling, X.; Joseph, R.; Mensah, L. K.; Lu, X. RSC Advances 2012, 2, 1213. https://doi.org/10.1039/c1ra00768h
  3. Walker, S.; Oun, R.; McInnes, F. J.; Wheate, N. J. Isr. J. Chem. 2011, 51, 616. https://doi.org/10.1002/ijch.201100033
  4. Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H. J.; Kim, K. Acc. Chem. Res. 2003, 36, 621. https://doi.org/10.1021/ar020254k
  5. Isaacs, L. Isr. J. Chem. 2011, 51, 578. https://doi.org/10.1002/ijch.201100022
  6. Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. Angew. Chem. Int. Ed. 2005, 44, 4844. https://doi.org/10.1002/anie.200460675
  7. Kim, J.; Jung, I. S.; Kim, S. Y.; Lee, E.; Kang, J. K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. J. Am. Chem. Soc. 2000, 122, 540. https://doi.org/10.1021/ja993376p
  8. Wagner, B. D.; Stojanovic, N.; Day, A. I.; Blanch, R. J. J. Phys. Chem. B 2003, 107, 10741. https://doi.org/10.1021/jp034891j
  9. Wagner, B. D.; Boland, P. G.; Lagona, J.; Isaacs, L. J. Phys. Chem. B 2005, 109, 7686. https://doi.org/10.1021/jp044369c
  10. Zhou, Y.; Yu, H.; Zhang L.; Sun. J; Wu, L.; Lu, Q.; Wang, L. J. Incl. Phenom. Macrocycl. Chem. 2008, 61, 259. https://doi.org/10.1007/s10847-008-9414-8
  11. Choudhury, S. D.; Mohanty, J.; Upadhyaya, H. P.; Bhasikuttan, A. C.; Pal, H. J. Phys. Chem. B 2009, 113, 1891. https://doi.org/10.1021/jp8103062
  12. Valeur, B. Molecular Fluorescence, 3rd Ed, Wiley-VCH: 2006.
  13. Slavik, J. Fluorescent Probes in Cellular and Molecular Biology, CRC Press: 1994.
  14. Wagner, B. D. Molecules 2009, 14, 210. https://doi.org/10.3390/molecules14010210
  15. Nau, W. M.; Mohanty, J. Int. J. Photoenergy 2005, 7, 133. https://doi.org/10.1155/S1110662X05000206
  16. Limei, Z.; Jiannan, Z.; Yunqian, Z.; Qianjiang, Z.; Saifen, X.; Tao, Z.; Jianxin, Z.; Xin, Z.; Zhanbin, W.; Lasheng, L.; Day, A. I. Supramol. Chem. 2008, 1.
  17. Zhau, Y.; Xue, S.; Zhu, Q.; Tao, Z.; Zhang, J.; Wei, Z.; Long, L.; Hu, M.; Xiao, H.; Day, A. I. Chi. Sci. Bull. 2004, 49, 1111. https://doi.org/10.1360/04wb0031
  18. Montes-Navajas, P.; Garcia, H. J. Phys. Chem. C 2010, 114, 2034. https://doi.org/10.1021/jp9095166
  19. Wagner, B. D.; Fitzpatrick, S. J.; McManus, G. J. J. Inc. Phenom. Macrocycl. Chem. 2003, 47, 187. https://doi.org/10.1023/B:JIPH.0000011779.65838.44
  20. Day, A.; Arnold, A. P.; Blanch, R. J.; Sunshall, B. J. Org. Chem. 2001, 66, 8094. https://doi.org/10.1021/jo015897c
  21. Oh, K. S.; Yoon, J.; Kim, K. S. J. Phys. Chem. B 2001, 105, 9726. https://doi.org/10.1021/jp011919n
  22. Marquez, C.; Huang, F.; Nau, W. M. IEEE trans. Nanobiosci. 2004, 3, 39. https://doi.org/10.1109/TNB.2004.824269
  23. Deshpande, A. V.; Jathar, L. V.; Rane, J. R. J. Fluoresc. 2009, 19, 607. https://doi.org/10.1007/s10895-008-0451-x
  24. Munoz de la Pena, A.; Salinas, F.; Gomez, M. J.; Acedo, M. I.; Sanchez Pena, M. J. Incl. Phenom. Mol. Rec. Chem. 1993, 15, 131. https://doi.org/10.1007/BF00710222
  25. Nigam, S.; Durocher, G. J. Phys. Chem. 1996, 100, 7135. https://doi.org/10.1021/jp952855h
  26. Singh, M. K.; Pal, H.; Koti, A. S. R.; Sapre, A. V. J. Phys. Chem. A 2004, 108, 1465. https://doi.org/10.1021/jp035075e
  27. Jones II, G.; Jackson, W. R.; Choi, C.; Bergmark, W. R. J. Phys. Chem. 1985, 89, 294. https://doi.org/10.1021/j100248a024
  28. Strickler, S. J.; Berg, R. A. J. Chem. Phys. 1962, 37, 814. https://doi.org/10.1063/1.1733166
  29. Marquez, C.; Nau, W. M. Angew. Chem. Int. Ed. 2001, 40(23), 4387. https://doi.org/10.1002/1521-3773(20011203)40:23<4387::AID-ANIE4387>3.0.CO;2-H

Cited by

  1. Two-Photon-Excited Fluorescence-Encoded Infrared Spectroscopy vol.120, pp.46, 2016, https://doi.org/10.1021/acs.jpca.6b09158
  2. Supramolecular Cages Based on a Silver Complex as Adaptable Hosts for Poly‐Aromatic Hydrocarbons vol.16, pp.47, 2020, https://doi.org/10.1002/smll.202001377