DOI QR코드

DOI QR Code

Matrix Infrared Spectra and DFT Computations of CH2CNH and CH2NCH Produced from CH3CN by Laser-Ablation Plume Radiation

  • Received : 2012.11.22
  • Accepted : 2013.02.05
  • Published : 2013.05.20

Abstract

The smallest ketenimine and hydrogen cyanide N-methylide ($CH_2CNH$ and $CH_2NCH$) are provided from the argon/acetonitrile matrix samples exposed to radiation from laser ablation of transition-metals. New infrared bands are observed in addition to better determination of the vibrational characteristics for the previously reported bands, and the $^{13}C$ substituted isotopomers ($^{13}{CH_2}^{13}CNH$ and $^{13}CH_2N^{13}CH$) are also generated. Density functional frequency calculations and the D and $^{13}C$ isotopic shifts substantiate the vibrational assignments. $CH_2CNH$ is probably produced through single-step conversion of $CH_3CN$, whereas $CH_2NCH$ through two-step conversion via 2H-azirine. Inter-conversions between these two products evidently do not occur during photolysis and annealing.

Keywords

References

  1. Sandholm, S. T.; Bjarnov, E.; Schwendeman, R. H. J. Mol. Spectrosc. 1982, 95, 276-287. https://doi.org/10.1016/0022-2852(82)90128-X
  2. Kukolich, S. G. J. Chem. Phys. 1982, 76, 997-1006. https://doi.org/10.1063/1.443070
  3. Sassi, P.; Paliani, G.; Cataliotti, R. S. J. Chem. Phys. 1998, 108, 10197-10205. https://doi.org/10.1063/1.476479
  4. Deng, R.; Trenary, M. J. Phys. Chem. C 2007, 111, 17088-17093. (MeCN isomers). https://doi.org/10.1021/jp075668f
  5. Yang, X.; Maeda, S.; Ohno, K. J. Phys. Chem. A 2005, 109, 7319-7358. https://doi.org/10.1021/jp052067k
  6. Fan, L.; Ziegler, T. J. Chem. Phys. 1990, 92, 3645-3652. (PES of $CH_{3}NC$). https://doi.org/10.1063/1.457820
  7. Hattori, R.; Suzuki, E.; Shimizu, K. J. Mol. Struct. 2005, 738, 165-170. ($CH_{3}NC$). https://doi.org/10.1016/j.molstruc.2004.11.068
  8. Moran, S.; Ellis, H. B., Jr.; DeFrees, D. J.; McLean, A. D.; Ellison, G. B. J. Am. Chem. Soc. 1987, 109, 5996-6003. https://doi.org/10.1021/ja00254a018
  9. Svejda, P.; Volman, D. H. J. Phys. Chem. 1970, 74, 1872-1875. https://doi.org/10.1021/j100704a008
  10. Egland, R. J.; Symons, M. R. C. J. Chem. Soc. A 1970, 5, 1326-1329. ($H_{2}CNC$).
  11. Moran, S.; Ellis, H. B., Jr.; DeFrees, D. J.; McLean, A. D.; Paulson, S. E.; Ellison, G. B. J. Am. Chem. Soc. 1987, 109, 6004- 6010. https://doi.org/10.1021/ja00254a019
  12. Hirao, T.; Ozeki, H.; Saito, S.; Yamamoto, S. J. Chem. Phys. 2007, 127, 134312-1-7. ($H_{2}CNC$). https://doi.org/10.1063/1.2776267
  13. Maier, G.; Reisenauser, H. P.; Rademacher, K. Chem. Eur. J. 1998, 4, 1957-1963. https://doi.org/10.1002/(SICI)1521-3765(19981002)4:10<1957::AID-CHEM1957>3.0.CO;2-1
  14. Dendramis, A.; Leroi, G. E. J. Chem. Phys. 1977, 66, 4334-4341. https://doi.org/10.1063/1.433724
  15. Nimlos, M. R.; Davico, G.; Geise, C. M.; Wenthold, P. G.; Blanksby, W. C.; Lineberger, S. J.; Hadad, C. M.; Petersson, G. A.; Ellison, G. B. J. Chem. Phys. 2002, 117, 4323-4340. https://doi.org/10.1063/1.1496473
  16. Jacox, M. E. J. Phys. Chem. Ref. Data 2003, 32, 1-441. (HCCN, HCNC, & cyc-HCNC). https://doi.org/10.1063/1.1497629
  17. Jacox, M. E. Chem. Phys. 1979, 43, 157-172. https://doi.org/10.1016/0301-0104(79)85184-8
  18. Jacox, M. E.; Milligan, D. E. J. Am. Chem. Soc. 1963, 85, 278-282. https://doi.org/10.1021/ja00886a006
  19. Maier, G.; Schmidt, C.; Reisenauer, H. P.; Endlein, E.; Becker, D; Eckwert, J.; Hess, B. A.; Schaad, L. J. Chem. Ber. 1993, 126, 2337-2352. https://doi.org/10.1002/cber.19931261024
  20. Cho, H.-G.; Andrews, L. J. Phys. Chem. 2011, 115, 8638-8642. https://doi.org/10.1021/jp204887y
  21. Andrews, L.; Kushto, G. P.; Zhou, M.; Willson, S. P.; Souter, P. F. J. Chem. Phys. 1999, 110, 4457-4466. https://doi.org/10.1063/1.478329
  22. Andrews, L.; Cho, H.-G. Organometallics 2006, 25, 4040-4053. (Review article). https://doi.org/10.1021/om060318l
  23. Cho, H.-G.; Andrews, L. J. Am. Chem. Soc. 2008, 130, 15836-15841. https://doi.org/10.1021/ja805862j
  24. Zhou, M.; Chen, M.; Zhang, L.; Lu, H. J. Phys. Chem. A 2002, 106, 9017-9023. https://doi.org/10.1021/jp020971w
  25. Cho, H.-G.; Andrews, L. Dalton Trans. 2011, 40, 11115-11124. https://doi.org/10.1039/c0dt01827a
  26. Andrews, L.; Citra, A. Chem. Rev. 2002, 102, 885-911. https://doi.org/10.1021/cr0000729
  27. Andrews, L. Chem. Soc. Rev. 2004, 33, 123-132. https://doi.org/10.1039/b210547k
  28. Cho, H.-G.; Andrews, L. J. Phys. Chem. A 2010, 114, 891-897. https://doi.org/10.1021/jp9099368
  29. Cho, H.-G.; Andrews, L. J. Phys. Chem. A 2010, 114, 5997-6006. https://doi.org/10.1021/jp1012686
  30. Cho, H.-G.; Andrews, L. J. Organomet. Chem. 2012, 703, 25-33. https://doi.org/10.1016/j.jorganchem.2011.12.007
  31. Cho, H.-G.; Andrews, L. Organometallics 2011, 31, 535-544.
  32. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision A.02, Gaussian, Inc.: Wallingford, CT, 2009.
  33. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. https://doi.org/10.1063/1.464913
  34. Lee, C.; Yang, Y.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785
  35. Burke, K.; Perdew, J. P.; Wang, Y. In Electronic Density Functional Theory: Recent Progress and New Directions; Dobson, J. F., Vignale, G., Das, M. P., Eds.; Plenum: 1998.
  36. Fukui, K. Acc. Chem. Res. 1981, 14, 363-368. https://doi.org/10.1021/ar00072a001

Cited by

  1. Computational Study on the Vinyl Azide Decomposition vol.118, pp.27, 2014, https://doi.org/10.1021/jp500140j
  2. DFT Studies on Two Novel Explosives Based on the Guanidine-Fused Bicyclic Structure vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1043
  3. Matrix Infrared Spectra and DFT Computations of 2H-Azirine Produced from Acetonitrile by Laser-Ablation Plume Radiation vol.35, pp.7, 2014, https://doi.org/10.5012/bkcs.2014.35.7.2093
  4. CN in the Gas Phase vol.120, pp.28, 2016, https://doi.org/10.1021/acs.jpca.6b04733
  5. Formation of methyl ketenimine (CH3CH = C = NH) and ethylcyanide (CH3CH2C≡N) isomers through successive hydrogenations of acrylonitrile (CH2 = CH − C≡N) under interstellar conditions: The rol vol.485, pp.4, 2013, https://doi.org/10.1093/mnras/stz698
  6. Determination of [CH3NC]/[H2C═C═NH] Abundance Ratios from N + CH3CN Solid Phase Reaction in the Temperature Range from 10 to 40 K: Application to the Com vol.3, pp.6, 2019, https://doi.org/10.1021/acsearthspacechem.9b00044
  7. SERS-Active Cu Nanoparticles on Carbon Nitride Support Fabricated Using Pulsed Laser Ablation vol.9, pp.9, 2013, https://doi.org/10.3390/nano9091223
  8. Computational Study of the Ene/Rearrangement Reaction between (F3C)2B═NMe2, 1, and Acetonitrile: Reactant-Catalyzed Mechanism of the Ketenimine-Nitrile-Like Rea vol.123, pp.43, 2013, https://doi.org/10.1021/acs.jpca.9b09403