DOI QR코드

DOI QR Code

Study on the Changes of Cellulose Molecular Weight and α-Cellulose Content by the Extrusion Conditions of Cellulose-NMMO Hydrate Solution

셀룰로오스-NMMO 수화물 용액의 압출가공 조건에 따른 셀룰로오스 분자량과 알파 셀룰로오스 함량 변화에 대한 연구

  • Kim, Dong-Bok (Center for Photofunctional Energy Materials, Dept. of Polymer Science and Engineering, Dankook University)
  • 김동복 (단국대학교 광에너지소재연구센터, 고분자시스템공학과)
  • Received : 2012.12.05
  • Accepted : 2013.01.30
  • Published : 2013.05.25

Abstract

During extruder processing to manufacture cellulose fiber and film using cellulose-NMMO pre-dope produced by a new method, it seems to occur the changes of molecular weight and ${\alpha}$-cellulose content of cellulose upon thermal and mechanical degradation. In an extruder making cellulose solutions from the pre-dope obtained by high-speed mixer, the changes of cellulose molecular weight and ${\alpha}$-cellulose content resulted with the variations of processing temperature, concentration of cellulose, and residence time. The molecular weight and ${\alpha}$-cellulose content of cellulose decreased with decreasing cellulose concentration and increasing processing temperature. At 15% concentration and short residence time region, the change of ${\alpha}$-cellulose content was so high due to high-shear with an increase in temperature. From these processing conditions, the variations of ${\alpha}$-cellulose content and molecular weight showed different behaviors, and these processing conditions for making cellulose solution were found to be important factors.

새로운 방법에 의하여 제조된 셀룰로오스-NMMO pre-dope를 이용한 셀룰로오스 섬유 및 필름 제조를 위한 압출가공 시 열분해 및 기계적 분해에 따른 셀룰로오스의 분자량 및 알파 셀룰로오스 함량 변화에 대하여 고찰하였다. 고속분쇄에 의해 제조된 pre-dope를 압출기에 통과시켜 용액으로 제조할 때 가공온도, 셀룰로오스의 농도 및 체제시간에 따라 셀룰로오스의 분자량 및 알파 셀룰로오스 함량 변화가 다양하게 나타났다. 셀룰로오스의 분자량과 알파 셀룰로오스 함량은 셀룰로오스의 농도가 낮을수록 온도가 높을수록 감소하였다. 셀룰로오스 농도 15% 및 짧은 체제시간 영역에서 알파 셀룰로오스 함량은 높은 전단으로 인해 온도가 높을수록 가장 큰 변화를 보였다. 다양한 가공조건으로부터 알파 셀룰로오스 함량변화 거동은 분자량 변화와 다른 거동을 보였으며 셀룰로오스 용액 제조를 위한 압출가공조건이 중요 요인임을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 경기도지역협력연구센터(CRRC)

References

  1. A, F, Turbak, R. B. Hammer, R. E. Davies, and H. L. Hergert, CHEMTECH, 51 (1980).
  2. A. S. Chegolya, D. D. Grinshpan, and E. Z. Burd, Textile Research J., 59, 501 (1989). https://doi.org/10.1177/004051758905900902
  3. G. Audemars, Br. Patent 283 (1855).
  4. H. B. Chardonnet, Fr. Patent 165,349 (1884).
  5. C. F. Cross, E. J. Bevan, and C. Beadle, Br. Patent 8,700 (1892).
  6. L. H. Despaissis, Fr. Patent 203,741 (1890).
  7. M. Nicholson and D. C. Johnson, U.S. Patent 4,097,666 (1978).
  8. R. B. Hammer, A. F. Turbak, R. E. Davies, and N. A. Portnoy, U.S. Patent 4,022,631 (1977).
  9. D. C. Johnson, Cellulose Chemistry and Its Application, Northwood, N.Y., 1985.
  10. D. L. Johnson, U.S. Patent 3,447,939 (1969).
  11. D. Cole and A. Jones, Lenzinger Berichte, 69, 73 (1990).
  12. S. Davies, Textile Horizones, Feb., 62 (1989).
  13. S. W. Chun, W. S. Lee, S. M. Jo, and J. D. Kim, J. Korean Fiber Soc., 29, 44 (1992).
  14. W. S. Lee, S. M. Jo, H. J. Kang, D. B. Kim, and J. S. Park, U.S. Patent 5,584,919 (1996).
  15. H. Chanzy, S. Nawrot, A. Peguy, and P. Smith, J. Polym. Sci. Polym. Phys. Ed., 20, 1909 (1982). https://doi.org/10.1002/pol.1982.180201014
  16. H. Chanzy and A. Peguy, J. Polym. Sci. Polym. Lett. Ed., 17, 219 (1979). https://doi.org/10.1002/pol.1979.130170408
  17. E. Maia, and S. Perez, Acta Crystallogr., B38, 849 (1982).
  18. C. C. McCorsley III and J. K. Varga U.S. Patent 4,211,574 (1980).
  19. C. C. McCorsley III and J. K. Varga U.S. Patent 4,142,913 (1979).
  20. C. C. McCorsley III, U.S. Patent 4,144,080 (1979).
  21. H. Chanzy, P. Noe, M. Paillet, and P. Smith, J. Appl. Polym. Sci. Appl. Polym. Symp., 37, 239 (1983).
  22. D. B. Kim, S. M. Jo, W. S. Lee, and J. J. Pak, J. Appl. Polym. Sci., 93, 1687 (2004). https://doi.org/10.1002/app.20607
  23. D. B. Kim, W. S. Lee, and H. J. Kang, Polymer(Korea), 22, 770 (1998).
  24. W. S. Lee. B. C. Kim, S. M. Jo, J. S. Park, S. J. Lee, Y. G. Park, S. L. Lee, and Y. S. Oh, U.S. Patent 6,153,003 (2000).
  25. S. H. Park, Y. H. Jeong, W. S. Lee, and H. J. Kang, Polymer(Korea), 22, 779 (1998).
  26. G. Raven, International Fiber J., 6, 10 (1993).
  27. W. S. Lee and S. M. Jo, Chem. Fibers Int., 49, 46 (1999).
  28. D. B. Kim, W. S. Lee, B. C. Kim, S. M. Jo, J. S. Park, and Y. M. Lee, Polymer(Korea), 22, 231 (1998).
  29. L. D. Loubinoux, Lenzinger Berichte, 59, 105 (1985).
  30. M. Mark, Macromol. Chem., 16, 157 (1955). https://doi.org/10.1002/macp.1955.020160118
  31. O. Conner, "X-ray Diffraction", in Instrumental Analysis of Cotton Cellulose and Modified Cotton Cellulose, Dekker, N. Y., Chap. 6, p 339 (1972).
  32. P. Navard and J. M. Haudin, Brit. Polym. J., 12, 174 (1980).
  33. W. S. Lee, S. M. Jo, D. B. Kim, Y. M. Lee, and B. C. Kim, Korean J. Rheol., 10, 44 (1998).
  34. J. F. Blachot, N. Brunet. P. Navard, and J. Y. Cavaille, Rheol. Acta, 37, 107 (1998). https://doi.org/10.1007/s003970050096
  35. H. Zhang, Y. Zhang, H. Shao, and X. Hu, J. Appl. Polym. Sci., 94, 598 (2004). https://doi.org/10.1002/app.20732
  36. H. Zhang, X. Liu, D. Li, and R. Li, Polym. Eng. Sci., 49, 554 (2009). https://doi.org/10.1002/pen.21156
  37. J. Eckelt, A. Knopf, T. Röder, H. K. Weber, H. Sixta, and B. A. Wolf, J. Appl. Polym. Sci., 119, 670 (2011). https://doi.org/10.1002/app.32785