DOI QR코드

DOI QR Code

Effect of pH-Sensitive P(MAA-co-PEGMA) Hydrogels on Release and Stability of Albumin

pH 감응성 P(MAA-co-PEGMA) 수화젤이 알부민의 방출과 안정성에 미치는 영향

  • Yang, Juseung (Department of Chemical Engineering, Hongik University) ;
  • Kim, Bumsang (Department of Chemical Engineering, Hongik University)
  • Received : 2012.08.07
  • Accepted : 2012.12.24
  • Published : 2013.05.25

Abstract

pH-sensitive P(MAA-co-PEGMA) hydrogel particles were prepared and their feasibility as smart delivery carriers for cosmetic ingredients was evaluated. P(MAA-co-PEGMA) hydrogel particles having an average size of approx. $2{\mu}m$ were synthesized via dispersion photopolymerization. There was a drastic change in the swelling ratio of P(MAA-co-PEGMA) particles at a pH of around 5 due to the ionization of MAA in the hydrogel and as the amount of MAA in the hydrogel increased, the swelling ratio increased at a pH above 5. The P(MAA-co-PEGMA) hydrogel particles showed a pH-sensitive release behavior. Thus, at pH 4 almost none of the albumin permeated through the skin while at pH 6 relatively high skin permeability was obtained. The albumin loaded in the P(MAA-co-PEGMA) hydrogel particles was hardly degraded in the presence of pepsin and its stability was maintained.

본 연구에서는 pH 감응성 수화젤 입자를 이용하여 외부환경에 불안정한 활성물질을 화장품 제형 내에서는 안정하게 보존하고, 피부에 도포 시 빠른 방출로 피부에 흡수될 수 있는 지능형 전달시스템의 구현 가능성을 확인하기 위하여, 분산광중합을 이용하여 pH 감응성을 가지는 P(MAA-co-PEGMA) 수화젤 입자를 평균 크기 약 $2{\mu}m$의 구형 입자로 합성하였다. 합성된 P(MAA-co-PEGMA) 수화젤 입자는 수화젤의 MAA에 존재하는 카르복시기의 이온화에 의하여 pH 5를 전후로 한 급격한 팽윤비의 변화를 보여주었다. pH에 따른 수화젤 내부에 탑재된 알부민의 방출 및 피부투과 실험결과, P(MAA-co-PEGMA) 수화젤 입자는 pH 4.0에서는 소량의 알부민이 방출되어 피부 투과가 거의 일어나지 않은 반면, pH 6.0에서는 초기부터 다량의 알부민이 방출되어 상대적으로 높은 피부투과율을 나타내었다. 펩신을 이용한 알부민의 안정성 실험결과, P(MAA-co-PEGMA) 수화젤은 내부에 탑재된 알부민을 외부 환경으로부터 보호하여 알부민의 안정성을 유지시켜 주었다.

Keywords

Acknowledgement

Supported by : 홍익대학교

References

  1. N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Eur. J. Pharm. Biopharm., 50, 27 (2000). https://doi.org/10.1016/S0939-6411(00)00090-4
  2. B. G. Chung, K. H. Lee, A. Khademhosseini, and S. H. Lee, Lab Chip, 12, 45 (2012). https://doi.org/10.1039/c1lc20859d
  3. C. Gonzalez-Chomon, A. Concheiro, and C. Alvarez-Lorenzo, Materials, 4, 1927 (2011). https://doi.org/10.3390/ma4111927
  4. J. Cabral and S. C. Moratti, Future Med. Chem., 3, 1877 (2011). https://doi.org/10.4155/fmc.11.134
  5. E. Jabbari, Curr. Opin. Biotechnol., 22, 655 (2011). https://doi.org/10.1016/j.copbio.2011.01.003
  6. B. Jeong, S. W. Kim, and Y. H. Bae, Adv. Drug Deliv. Rev., 54, 37 (2002). https://doi.org/10.1016/S0169-409X(01)00242-3
  7. I. Tomatsu, K. Peng, and A. Kros, Adv. Drug Deliv. Rev., 63, 1257 (2011). https://doi.org/10.1016/j.addr.2011.06.009
  8. Z. Li and J. Guan, Expert Opin. Drug Deliv., 8, 991 (2011). https://doi.org/10.1517/17425247.2011.581656
  9. L. Zha, B. Banik, and F. Alexis, Soft Matter, 7, 5908 (2011). https://doi.org/10.1039/c0sm01307b
  10. A. K. Bajpai, J. Bajpai, R. Saini, and R. Gupta, Polym. Rev., 51, 53 (2011). https://doi.org/10.1080/15583724.2010.537798
  11. A. C. Foss, T. Goto, M. Morishita, and N. A. Peppas, Eur. J. Pharm. Biopharm., 57, 163 (2004). https://doi.org/10.1016/S0939-6411(03)00145-0
  12. G. Mocanu, D. Mihai, V. Dulong, L. Picton, and D. Le Cerf, Carbohydr. Polym., 87, 1440 (2012). https://doi.org/10.1016/j.carbpol.2011.09.037
  13. B. Kim, S. H. Kim, and W. Ryoo, J. Biomater. Sci.-Polym. Ed., 20, 427 (2009). https://doi.org/10.1163/156856209X416458
  14. E. Lee and B. Kim, Polym. Bull., 67, 67 (2011). https://doi.org/10.1007/s00289-010-0403-x
  15. K. M. Wood, G. M. Stone, and N. A. Peppas, Acta Biomater., 6, 48 (2010). https://doi.org/10.1016/j.actbio.2009.05.032
  16. S. Zhang, Nat. Mater., 3, 7 (2004). https://doi.org/10.1038/nmat1047
  17. A. Revzin, R. J. Russell, V. K. Yadavalli, W. G. Koh, C. Deister, D. D. Hile, M. B. Melott, and M. V. Pishko, Langmuir, 17, 5440 (2001). https://doi.org/10.1021/la010075w
  18. J. Zhu and R. E. Marchant, Expert Rev. Med. Devices, 8, 607 (2011). https://doi.org/10.1586/erd.11.27
  19. A. M. Kligman and C. M. Papa, J. Soc. Cosmetic Chemists, 16, 557 (1965).
  20. T. Peters, All about Albumin: Biochemistry, Genetics, and Medical Applications, Academic Press, New York, 1996.
  21. R. Jiang, C. G. J. Hayden, R. J. Prankerd, M. S. Roberts, and H. A. E. Benson, J. Chromatogr. B, 682, 137 (1996). https://doi.org/10.1016/0378-4347(96)00063-1
  22. S. Hasse, S. Kothari, H. Rokos, S. Kauser, N.Y. Schurer, and K. U. Schallreuter, Exp. Dermatol., 14, 182 (2005). https://doi.org/10.1111/j.0906-6705.2005.00265.x
  23. A. Kerr and J. Ferguson, Photodermatol. Photoimmunol. Photomed., 26, 56 (2010). https://doi.org/10.1111/j.1600-0781.2010.00494.x
  24. V. Sharma, A. Jaishankar, Y. C. Wang, and G. H. McKinley, Soft Matter, 7, 5150 (2011). https://doi.org/10.1039/c0sm01312a

Cited by

  1. Electrospun P(NVCL-co-MAA) nanofibers and their pH/temperature dual-response drug release profiles vol.298, pp.6, 2013, https://doi.org/10.1007/s00396-020-04647-y
  2. Preparation and characterization of thermoresponsive poly(N‐isopropylacrylamide‐co‐N‐isopropylmethacrylamide) hydrogel materials for smart windows vol.138, pp.6, 2013, https://doi.org/10.1002/app.49788