DOI QR코드

DOI QR Code

석탄층내 CH4과 CO2의 흡착거동에 의한 ECBM 효율성 분석

The Analysis of ECBM Efficiency about Sorption Rate between CH4 and CO2

  • 김기홍 (한양대학교 자원환경공학과) ;
  • 성원모 (한양대학교 자원환경공학과) ;
  • 한정민 (한양대학교 자원환경공학과)
  • Kim, Kihong (Dept. of Natural Resource and Environmental Engineering, Hanyang University) ;
  • Sung, Wonmo (Dept. of Natural Resource and Environmental Engineering, Hanyang University) ;
  • Han, Jeongmin (Dept. of Natural Resource and Environmental Engineering, Hanyang University)
  • 투고 : 2013.02.07
  • 심사 : 2013.04.15
  • 발행 : 2013.04.30

초록

$CO_2$ 주입에 의한 석탄층 가스생산거동을 평가하기 위해서는 석탄에 대한 $CH_4$$CO_2$의 가스흡착거동을 파악하는 것이 중요하다. 본 연구에서는 $CO_2$ 회수증진공법이 가능한 석탄층 심도내 압력과 온도가 흡착량 에 미치는 영향을 파악하고자 하였다. 이를 위해서 압력은 상압에서 1400 psia의 범위까지, 온도는 $15^{\circ}C$에서 $45^{\circ}C$까지 $10^{\circ}C$ 간격으로 흡착량 실험을 수행하였다. 그 결과, $CO_2$$CH_4$ 모두 탄층 압력이 커질수록 흡착량이 증가하는 반면에, 온도가 증가할수록 $CO_2$$CH_4$의 흡착량은 일정한 비율로 감소하는 것으로 나타났다. 또한 심도 800m 이하의 범위내에서는 심도가 깊어질수록 $CO_2$ 격리량 및 $CH_4$ 생산량은 증가하지만, 심도에 대한 증가폭은 지속적으로 감소됨을 확인할 수 있었다.

In order to asses gas production behavior for $CO_2$ ECBM, the sorption charcteristics on coal are considered to be a key factor. In this study, we have investigated the change of the sorption rate of adsorbed gas as a function of pressure and temperature below the appropriate depth for $CO_2$-ECBM. The experiment were carried out under four different temperatures varying from $15^{\circ}C$ to $45^{\circ}C$, while the coal pressure was varied from atmosphere to 1,400 psi for every temperature. From this results, the sorption rate both $CO_2$ and $CH_4$ increased with increasing the coal pressure. Otherwise, the sorption rate both $CH_4$ and $CO_2$ decreased linearly as the coal temperature increased. From the sensitivity studies on pressure and temperature change, it was experimentally identified that $CO_2$ sequestration rate and $CH_4$ production rate are better at deeper depths below a depth of 800 m in coal seams. However, the results showed continued decline in the increasing ratio of ECBM with formation depth.

키워드

참고문헌

  1. Kim, K.H., Sung, W. M., Han, J. M. and Lee, T. H., "The effect of aquifer condition on methane recovery for $CO_2$ injection in coalbed," Geosystem Eng., 15(4), 247-260, (2012) https://doi.org/10.1080/12269328.2012.732315
  2. Jessen, K., Lin, W. and Kovsek, A. R., "Multicomponent Sorption Modeling in ECBM Displacement Calculations," SPE Annual Technical Conference and Exhibition, 1-10, (2007)
  3. Bachu. S., "Carbon dioxide storage capacity in uneconomic coal beds in Alberta, Canada: Methodology, potential and site identification," Int. J. Greenhouse gas control 1, 430-443, (2007) https://doi.org/10.1016/S1750-5836(07)00086-2
  4. Gale, J., and Freund, P., "Coal-bed methane enhancement with CO2 sequestration worldwide potential," Enviorn. Geosci. 8 (3), 210-217, (2001) https://doi.org/10.1046/j.1526-0984.2001.008003210.x
  5. Dawson, F. M., "Coalbed methane: a comparison between Canada and the United States.," Geological Survey of Canada, Bulletin. 489, Ottawa, ON, Canada, (1995)
  6. Bachu. S., "CO2 storage in geological media: Role, means, status and barriers to deployment," Progress Energy Combust Sci., 34 (2), 254-273, (2007)
  7. Kim, K. H., Kim, S. J., Lee, M. K. and Sung, W. M., "The effect of CO2-CH4 sorption phenomena on methane recovery of coalbed methane," Geosystem Eng., 14(3), 127-133, (2011) https://doi.org/10.1080/12269328.2011.10541341
  8. Bromhal, G. S., Sams, W. N., Eterkin, T. and Smith, D. H., "Simulation of CO2 sequestration in coalbeds: the effect of sorption isotherms," Chemical Geology, 217, 201-211, (2005) https://doi.org/10.1016/j.chemgeo.2004.12.021
  9. Crosdale, P. J., Moore, T. A. and Mares, T. E., "Influence of moisture content and temperature on methane adsorption isotherm analysis for coals from a low-rank, biogenically-sourced gas reservoir," Int. J. of Coal Geology, 76, 166-174, (2008) https://doi.org/10.1016/j.coal.2008.04.004
  10. Krooss, B. M., Bergen, F. V., Gensterblum, Y., Siemons, N., Pagnier, H. J. M. and David, P., "High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsyvanian coals," Int. J. of Coal Geology, 51, 69-92, (2002) https://doi.org/10.1016/S0166-5162(02)00078-2
  11. Kim, H. J., Shi, Y., He, J., Lee, H. H. and Lee, C. H., "Adsorption characteristics of CO2 and CH4 on dry and wet coal from subcritical to supercritical condition," Chemical Eng. Journal, 171, 45-53, (2011) https://doi.org/10.1016/j.cej.2011.03.035
  12. Arri, L.E., Yee, D., Morgan, W. D. and Jeansonmne, M. W., "Modeling Coalbed Methane Production with Binary Gas Sorption," SPE Rocky Mountain Regional Meeting, 1-14, (1992)
  13. Stach, E., Mackowsky, M. T., Teichmuller, M., Taylor, G. H., Chandra, D., and Teichmuller, R., "Stach's textbook of coal petrology," Bloomington, Indiana University, (1998)
  14. NIST, Thermophysical Properties of Fluid system. http://webbook.nist.gov/chemistry/fluid/.
  15. David, H. S., Meer, L. G., and Gunter, W. D., "Numerical simulator comparison study for enhanced coalbed methane recovery process, part 1 : Pure carbon dioxide injection," SPE Gas technology symposium, 30, (2002)
  16. Jienan, P., Quanlin, H., Yiwen, J. Heliang, B., and Yanqing Z., "Coalbed methane sorption related to coal deformation structures at different temperatures and pressure," Fuel. 102, 760-765, (2012) https://doi.org/10.1016/j.fuel.2012.07.023
  17. Lee, Y. S., Kim, K. H., Lee, T. H., Sung, W. M., Park, Y. C. and Lee, J. H. "Analysis of CO2 endpoint relative permeability and injectivity by change in pressure, temperature, and phase in saline aquifer" Energy Sources, Part A, 32(1), 83-99, (2010)

피인용 문헌

  1. Techno-economic evaluation of gas separation processes for long-term operation of CO2 injected enhanced coalbed methane (ECBM) pp.1975-7220, 2017, https://doi.org/10.1007/s11814-017-0261-4