DOI QR코드

DOI QR Code

Detection of Acoustic Signal Emitted during Degradation of Lithium Ion Battery

리튬이온전지의 열화손상에 의한 음향방출 신호 검출

  • Choi, Chan-Yang (Department of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Byeon, Jai-Won (Department of Materials Science & Engineering, Seoul National University of Science & Technology)
  • 최찬양 (서울과학기술대학교 신소재공학과) ;
  • 변재원 (서울과학기술대학교 신소재공학과)
  • Received : 2013.03.21
  • Accepted : 2013.04.19
  • Published : 2013.04.30

Abstract

Acoustic emission(AE) signal was detected during charge and discharge of lithium ion battery to investigate relationships among cumulative count, discharge capacity, and microdamages. AE signal was received during accelerated charge/discharge cycle test of a coin-type commercial battery. A number of AE signals were successfully detected during charge and discharge, respectively. With increasing number of cycle, discharge capacity was decreased and AE cumulative count was observed to increase. Microstructural observation of the decomposed battery after cycle test revealed mechanical damages such as interface delamination and microcracking of the electrodes. These damages were attributed to sources of the detected AE signals. Based on a linear correlation between discharge capacity and cumulative count, feasibility of AE technique for evaluation of battery degradation was suggested.

리튬이온전지의 충/방전 열화 과정에서 발생하는 음향방출 신호를 검출하여 누적카운트, 방전용량, 미세손상 사이의 상관관계를 확인하였다. 상용 리튬이온전지를 사용하여 가속 충/방전 싸이클 실험을 하면서 음향방출 신호를 수집하였다. 다수의 음향방출 신호가 전지의 충전 및 방전 과정에서 각각 검출되었다. 충/방전 열화 싸이클이 증가함에 따라 전지 용량은 감소하였고 음향방출 신호의 누적카운트는 증가하는 경향을 보였다. 충/방전 후 전지를 분해하여 내부 전극 손상을 관찰한 결과 전극 계면 박리 및 미소균열이 다수 확인되었으며, 이러한 기계적 손상이 음향방출원인 것으로 판단된다. 전지 방전용량과 음향방출 누적카운트 사이에는 선형의 상관관계가 있었으며, 이로부터 음향방출법을 이용한 리튬이온전지 열화 평가 가능성을 제안하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. J. W. Fergus, "Recent developments in cathode materials for lithium ion batteries," J. Power Sources, Vol. 195, pp. 939-954 (2010) https://doi.org/10.1016/j.jpowsour.2009.08.089
  2. J. Vetter, P. Novak, M. R. Wagner, C. Veit, K. C. Moller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler and A. Hammouche, "Ageing mechanisms in lithium-ion batterie," J. Power Sources, Vol. 147, pp. 269-281 (2005) https://doi.org/10.1016/j.jpowsour.2005.01.006
  3. G. Ning, B. Haran and B. N. Popov, "Capacity fade study of lithium-ion batteries cycled at high discharge rates," J. Power Sources, Vol. 117, pp. 160-169 (2003) https://doi.org/10.1016/S0378-7753(03)00029-6
  4. H. Wang, Y. I. Jang, B. Huang, D. R. Sadoway and Y. M. Chiang, "TEM study of electrochemical cycling-Induced damage and disorder in $LiCoO_2$ cathodes for rechargeable lithium batteries," J. Electrochem. Soc., Vol. 146, pp. 473-480 (1999) https://doi.org/10.1149/1.1391631
  5. J. S. Shin, C. H. Han, U. H. Jung, S. I. Lee, H. J. Kim and K. Kim, "Effect of $Li_2CO_3$ additive on gas generation in lithium-ion batteries," J. Power Sources, Vol. 109, pp. 47-52 (2002) https://doi.org/10.1016/S0378-7753(02)00039-3
  6. D. Goers, M. Holzapfel, W. Scheifele, E. Lehmann, P. Vontobel and P. Nov, "In situ neutron radiography of lithium-ion batteries: the gas evolution on graphite electrodes during the charging," J. Power Sources, Vol. 130, pp. 221-226 (2004) https://doi.org/10.1016/j.jpowsour.2003.11.065
  7. M. Morcrette, Y. Chabre, G. Vaughan, G. Amatucci, J. B. Leriche, S. Patoux, C. Masquelier and J. M. Tarascon, "In situ X-ray diffraction techniques as a powerful tool to study battery electrode materials," Electrochimica Acta, Vol. 47, pp. 3137-3149 (2002) https://doi.org/10.1016/S0013-4686(02)00233-5
  8. T. Itoh, H. Sato, T. Nishina, T. Matue and I. Uchida, "In situ Raman spectroscopic study of L$LixCoO_2$ electrodes in propylene carbonate solvent systems," J. Power Sources, Vol. 68, pp. 333-337 (1997) https://doi.org/10.1016/S0378-7753(97)02539-1
  9. J. N. Reimer and J. R. Dahn, "In-situ X-ray diffraction studies of lithium intercalation in $LixCoO_2$," J. Electrochem. Soc., Vol. 139, pp. 2091-2097 (1992) https://doi.org/10.1149/1.2221184
  10. K. Rhodes, N. Dudne, E. Lara-Curzio and C. Daniel, "Understanding the degradation of silicon electrodes for lithium-ion batteries using acoustic emission," J. Electrochem. Soc., Vol. 157, pp. 1354-1360 (2010) https://doi.org/10.1149/1.3489374
  11. N. Kircheva, S. Genies, D. Brun-Buisson, and P. X. Thivel, "Study of solid electrolyte interface formation and lithium intercalation in Li-ion batteries by acoustic emission," J. Electrochem. Soc., Vol. 159, pp. A18-A25 (2012) https://doi.org/10.1149/2.045201jes
  12. N. Kircheva, S. Genies, C. Chabrol, P. X. Thivel, "Evaluation of acoustic emission as a suitable tool for aging characterization of LiAl/$LiMnO_2$ cell," Electrochimica Acta, Vol. 88, pp. 488-494 (2013) https://doi.org/10.1016/j.electacta.2012.10.121
  13. C. Villevieille, M. Boinet and L. Monconduit, "Direct evidence of morphological changes in conversion type electrodes in li-ion battery by acoustic emission," Electrochemistry Communications, Vol. 12, pp. 1336-1339 (2010) https://doi.org/10.1016/j.elecom.2010.07.014

Cited by

  1. Detection of Acoustic Signal Emitted during Corrosion of 304 Stainless Steel vol.33, pp.5, 2013, https://doi.org/10.7779/JKSNT.2013.33.5.409