References
- Obrovac, M. N.; Christensen, L. Electrochem. Solid-State Lett. 2004, 7, A93. https://doi.org/10.1149/1.1652421
- Weydanz, W. J.; Wohlfahrt-Mehrens, M.; Huggins, R. A. J. Power Sources 1999, 81-82, 237. https://doi.org/10.1016/S0378-7753(99)00139-1
- Bourderau, S.; Brousse, T.; Schleich, D. M. J. Power Sources 1999, 81-82, 233. https://doi.org/10.1016/S0378-7753(99)00194-9
- Kasavajjula, U.; Wang, C.; Appleby, A. J. J. Power Sources 2007, 163, 1003. https://doi.org/10.1016/j.jpowsour.2006.09.084
- Ohara, S.; Suzuki, J.; Sekine, K.; Takamura, T. J. Power Sources 2003, 119-121, 591. https://doi.org/10.1016/S0378-7753(03)00301-X
- Kim, H.; Cho, J. Nano Lett. 2008, 8, 3688. https://doi.org/10.1021/nl801853x
- Dimov, N.; Kugino, S.; Yoshio, M. Electrochim. Acta 2003, 48, 1579. https://doi.org/10.1016/S0013-4686(03)00030-6
- Ng, S.-H.; Wang, J.; Wexler, D.; Konstantinov, K.; Guo, Z.-P.; Liu, H.-K. Angew. Chem. Int. E. 2006, 45, 6896. https://doi.org/10.1002/anie.200601676
- Liu, Y.; Hanai, K.; Matsumura, T.; Imanishi, N.; Hirano, A.; Takeda, Y. Electrochem. Solid-State Lett. 2004, 7, A492. https://doi.org/10.1149/1.1818021
- Magasinki, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G., Nature Mater. 2010, 9, 353. https://doi.org/10.1038/nmat2725
- Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. Science 2011, 75-79, 334.
- Lestriez, B.; Bahri, S.; Sandu, I.; Roué, L.; Guyomard, D. Electrochem. Commun. 2007, 9, 2801. https://doi.org/10.1016/j.elecom.2007.10.001
- Magasinski, A.; Zdyrko, B.; Kovalenko, I.; Hertzberg, B.; Burtovyy, R.; Huebner, C. F.; Fuller, T. F.; Luzinov, I.; Yushin, G. ACS Appl. Mater. Interfaces 2010, 2, 3004. https://doi.org/10.1021/am100871y
- Ryou, M.-H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T.-S.; Park, J.-K.; Lee, H.; Choi, J. W. Advanced Materials 2012.
- Lin, Y.-M.; Klavetter, K. C.; Abel, P. R.; Davy, N. C.; Snider, J. L.; Heller, A.; Mullins, C. B. Chem. Commun. 2012, 48, 7268. https://doi.org/10.1039/c2cc31712e
- Dalavi, S.; Guduru, P.; Lucht, B. L. J. Electrochem. Soc. 2012, 159, A642. https://doi.org/10.1149/2.076205jes
- Song, S.-W.; Baek, S.-W. Electrochem. Solid-State Lett. 2009, 12, A23. https://doi.org/10.1149/1.3028216
- Nguyen, C. C.; Song, S.-W. Electrochim. Acta 2010, 55, 3026. https://doi.org/10.1016/j.electacta.2009.12.067
- Choi, H.; Nguyen, C. C.; Song, S.-W. Bull. Kor. Chem. Soc. 2010, 31, 2519. https://doi.org/10.5012/bkcs.2010.31.9.2519
- Nguyen, C. C.; Song, S.-W. Electrochem. Commun. 2010, 12, 1593. https://doi.org/10.1016/j.elecom.2010.09.003
- Socrates, G. Infrared Characteristic Group Frequencies; Tables and Charts, 2nd ed.; John Wiley & Sons: 1994.
- Aurbach, D.; Daroux, M. L.; Faguy, P. W.; Yeager, E. J. Electrochem. Soc. 1987, 134, 1611. https://doi.org/10.1149/1.2100722
- Zhuang, G. V.; Ross, P. N. J. Electrochem. Solid-State Lett. 2003, 6, A136. https://doi.org/10.1149/1.1575594
- Daasch, L. W.; Smith, D. C. Anal. Chem. 1951, 23, 853. https://doi.org/10.1021/ac60054a008
- Nyquist, R. A. Appl. Spectrosc. 1987, 41, 272. https://doi.org/10.1366/000370287774986976
- Yang, H.; Zhuang, G. V.; Ross, P. N., Jr. J. Power Sources 2006, 161, 573. https://doi.org/10.1016/j.jpowsour.2006.03.058
- Zhou, W.; Upreti, S.; Whittingham, M. S. Electrochem. Commun. 2011, 13, 1102. https://doi.org/10.1016/j.elecom.2011.07.006
- Zhang, Y.; Zhang, X. G.; Zhang, H. L.; Zhao, Z. G.; Li, F.; Liu, C.; Cheng, H. M. Electrochim. Acta 2006, 51, 4994. https://doi.org/10.1016/j.electacta.2006.01.043
- Li, M.-Q.; Qu, M.-Z.; He, X.-Y.; Yu, Z.-L. Electrochim. Acta 2009, 54, 4506. https://doi.org/10.1016/j.electacta.2009.03.046
Cited by
- Nanocrystallines Prepared via a New Mechanochemical Strategy for Li-Ion Batteries vol.27, pp.3, 2016, https://doi.org/10.1002/adfm.201605011
- Sawtooth- or Pyramidal-patterned Si Negative Electrode Fabricated by Micro-Electro-Mechanical Systems for Li-Ion Secondary Battery vol.37, pp.11, 2016, https://doi.org/10.1002/bkcs.10961
- Effects of the Formulations of Silicon-Based Composite Anodes on their Mechanical, Storage, and Electrochemical Properties vol.10, pp.20, 2017, https://doi.org/10.1002/cssc.201701281
- General Method of Manipulating Formation, Composition, and Morphology of Solid-Electrolyte Interphases for Stable Li-Alloy Anodes pp.1520-5126, 2017, https://doi.org/10.1021/jacs.7b07584
- Artificial interphase engineering of electrode materials to improve the overall performance of lithium-ion batteries pp.1998-0000, 2017, https://doi.org/10.1007/s12274-017-1647-7
- Review—Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries vol.162, pp.14, 2015, https://doi.org/10.1149/2.0131514jes
- Fundamental Approach to Capacity Prediction of Si-Alloys as Anode Material for Li-ion Batteries vol.9, pp.1, 2013, https://doi.org/10.5229/jecst.2018.9.1.51
- Li- and Mn-rich layered oxide cathode materials for lithium-ion batteries: a review from fundamentals to research progress and applications vol.3, pp.5, 2013, https://doi.org/10.1039/c8me00025e
- Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries vol.11, pp.41, 2019, https://doi.org/10.1039/c9nr05748j
- Chemical Coupled PEDOT:PSS/Si Electrode: Suppressed Electrolyte Consumption Enables Long-Term Stability vol.13, pp.1, 2013, https://doi.org/10.1007/s40820-020-00564-5
- Recent Applications of Molecular Structures at Silicon Anode Interfaces vol.2, pp.4, 2013, https://doi.org/10.3390/electrochem2040041