DOI QR코드

DOI QR Code

Atomic Layer Deposition (ALD) of ZrO2 in Ultrahigh Vacuum (UHV)

  • Received : 2013.01.19
  • Accepted : 2013.01.30
  • Published : 2013.04.20

Abstract

The atomic layer deposition (ALD) of $ZrO_2$ was conducted in ultrahigh vacuum (UHV) conditions. The surface was exposed to $ZrCl_4$ and $H_2O$ in sequence and the surface species produced after each step were identified in situ with X-ray photoelectron spectroscopy (XPS). $ZrCl_4$ is molecularly adsorbed at 140 K on the $SiO_2$/Si(111) surface covered with OH groups. When the surface is heated to 300 K, $ZrCl_4$ loses two Cl atoms to produce $ZrCl_2$ species. Remaining Cl atoms of $ZrCl_2$ species can be completely removed by exposing the surface to $H_2O$ at 300 K followed by heating to 600 K. The layer-by-layer deposition of $ZrO_2$ was successfully accomplished by repeated cycles of $ZrCl_4$ dosing and $H_2O$ treatment.

Keywords

References

  1. George, S. M.; Ott, A. W.; Klaus, J. W. J. Phys. Chem. 1996, 100, 13121. https://doi.org/10.1021/jp9536763
  2. Suntola, T. Appl. Surf. Sci. 1996, 100/101, 391. https://doi.org/10.1016/0169-4332(96)00306-6
  3. Cameron, M. A.; Gartland, I. P.; Smith, J. A.; Diaz, S. F.; George, S. M. Langmuir 2000, 16, 7435. https://doi.org/10.1021/la9916981
  4. Yong, K.; Jeong, J. Korean J. Chem. Eng. 2002, 19, 451. https://doi.org/10.1007/BF02697156
  5. Marichy, C.; Bechelany, M.; Pinna, N. Adv. Mater. 2012, 24, 1017. https://doi.org/10.1002/adma.201104129
  6. Godlewski, M. Semicond. Sci. Technol. 2012, 27, 070301. https://doi.org/10.1088/0268-1242/27/7/070301
  7. Nagi, T.; Qi, W. J.; Sharma, R.; Fretwell, J. L.; Chen, X.; Lee, J. C.; Banerjee, S. K. Appl. Phys. Lett. 2001, 78, 3085. https://doi.org/10.1063/1.1372204
  8. Jones, A. C.; Aspinall, H. C.; Chalker, P. R.; Potter, R. J.; Kukli, K.; Rahtu, A., Ritala, M.; Leskelä, M. J. Mater. Chem. 2004, 14, 3101. https://doi.org/10.1039/b405525j
  9. Chen, R.; Kim, H.; McIntyre, P. C.; Bent, S. F. Appl. Phys. Lett. 2004, 84, 4017. https://doi.org/10.1063/1.1751211
  10. Lamagna, L.; Molle, A.; Wiemer, C.; Spiga, S.; Grazianetti, C.; Congedo, G.; Fanciulli, M. J. Electrochem. Soc. 2012, 159, H220. https://doi.org/10.1149/2.034203jes
  11. Kondaiah, P.; Rao, G. M.; Uthanna, S. J. Phys.: Conf. Ser. 2012, 390, 012031. https://doi.org/10.1088/1742-6596/390/1/012031
  12. Zhao, J.; Qu, G.; Flake, J. C.; Wang, Y. Chem. Comm. 2012, 48, 8108. https://doi.org/10.1039/c2cc33522k
  13. Kang, J. K.; Musgrave, C. B. J. Appl. Phys. 2002, 91, 3408. https://doi.org/10.1063/1.1436294
  14. Cassir, M.; Goubin, F.; Bernay, C.; Vernoux, P.; Lincot, D. Appl. Surf. Sci. 2002, 193, 120. https://doi.org/10.1016/S0169-4332(02)00247-7
  15. Zhou, J. B.; Gustafsson, T.; Garfunkel, E. Surf. Sci. 1997, 372, 21. https://doi.org/10.1016/S0039-6028(96)01100-4
  16. Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Mullenberg, G. E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corp.: Eden Prairie, U.S.A., 1979.

Cited by

  1. Alternative Low-Pressure Surface Chemistry of Titanium Tetraisopropoxide on Oxidized Molybdenum vol.118, pp.50, 2014, https://doi.org/10.1021/jp505653u
  2. (110) vol.36, pp.2, 2018, https://doi.org/10.1116/1.5005533
  3. Pliable Lithium Superionic Conductor for All-Solid-State Batteries vol.6, pp.None, 2013, https://doi.org/10.1021/acsenergylett.1c00545
  4. Plasma-Enhanced Atomic Layer Deposition of Zirconium Oxide Thin Films and Its Application to Solid Oxide Fuel Cells vol.11, pp.3, 2013, https://doi.org/10.3390/coatings11030362