DOI QR코드

DOI QR Code

Syntheses of Biologically Non-Toxic ZnS:Mn Nanocrystals by Surface Capping with O-(2-aminoethyl)polyethylene Glycol and O-(2-carboxyethyl)polyethylene Glycol Molecules

  • Kong, Hoon-Young (Department of Molecular Biology, Center for Photofunctional Energy Materials(GRRC Program in DKU), Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Song, Byung-Kwan (Department of Chemistry, Center for Photofunctional Energy Materials(GRRC Program in DKU), Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Byun, Jonghoe (Department of Molecular Biology, Center for Photofunctional Energy Materials(GRRC Program in DKU), Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Hwang, Cheong-Soo (Department of Chemistry, Center for Photofunctional Energy Materials(GRRC Program in DKU), Institute of Nanosensor and Biotechnology, Dankook University)
  • Received : 2012.12.12
  • Accepted : 2013.01.25
  • Published : 2013.04.20

Abstract

Water-dispersible ZnS:Mn nanocrystals were synthesized by capping the surface of the nanocrystal with O-(2-Aminoethyl)polyethylene glycol (PEG-$NH_2$, Mw = 10,000 g/mol) and O-(2-Carboxyethyl)polyethylene glycol (PEG-COOH, Mw = 10,000 g/mol) molecules. The modified PEG capped ZnS:Mn nanocrystal powders were thoroughly characterized by XRD, HR-TEM, EDXS, ICP-AES and FT-IR spectroscopy. The optical properties were also measured by UV/Vis and photoluminescence (PL) spectroscopies. The PL spectra showed broad emission peaks at 600 nm with similar PL efficiencies of 7.68% (ZnS:Mn-PEG-NH2) and 9.18% (ZnS:Mn-PEG-COOH) respectively. The measured average particle sizes for the modified PEG capped ZnS:Mn nanocrystals by HR-TEM images were 5.6 nm (ZnS:Mn-PEG-NH2) and 6.4 nm (ZnS:Mn-PEG-COOH), which were also supported by Debye-Scherrer calculations. In addition, biological toxicity effects of the nanocrystals over the growth of wild type E. coli were investigated. They showed no biological toxicity to E. coli until very high concentration dosage of 1 mg/mL of the both nanocrystal samples.

Keywords

References

  1. Alivisatos, P. J. Phys. Chem. 1996, 100, 13226. https://doi.org/10.1021/jp9535506
  2. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. https://doi.org/10.1021/ja00072a025
  3. Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Frechet, J. M. J. Adv. Mater. 2003, 15, 58. https://doi.org/10.1002/adma.200390011
  4. Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nature Biotechnol. 2002, 21, 47. https://doi.org/10.1038/nbt767
  5. Heath, J. R. Acc. Chem. Res. 1999, 32.
  6. Revaprasadu, N.; Malik, M. A.; O'Brien, P. J. Mater. Chem. 1998, 8, 1885. https://doi.org/10.1039/a802705f
  7. Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. B 1998, 102, 3655. https://doi.org/10.1021/jp9810217
  8. Hwang, J. M.; Oh, M. O.; Kim, I.; Lee, J. K.; Ha, C.-S. Curr. Appl. Phys. 2005, 5, 31. https://doi.org/10.1016/j.cap.2003.11.075
  9. Yu, S. H.; Wu, Y. S.; Yang, J. Chem. Mater. 1998, 9, 2312.
  10. Mattousi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2000, 122, 12142. https://doi.org/10.1021/ja002535y
  11. Chan, W. C. W.; Nie, S. Science 1998, 281, 2016. https://doi.org/10.1126/science.281.5385.2016
  12. Alivisatos, P. Science 1996, 271, 933. https://doi.org/10.1126/science.271.5251.933
  13. Gerion, D.; Pinaud, F.; Williams, S. C; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. J. Phys. Chem. B 2001, 195, 8861.
  14. Chen, C. C.; Yet, C. P.; Wang, H. N.; Chao, C. Y. Langmuir 1999, 15, 6845. https://doi.org/10.1021/la990165p
  15. Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1999, 121, 8122. https://doi.org/10.1021/ja991662v
  16. Hwang, C.-S.; Lee, N. R.; Kim, Y. A.; Park, Y. B. Bull. Kor. Chem. Soc. 2006, 27, 1809. https://doi.org/10.5012/bkcs.2006.27.11.1809
  17. Lee, J. H.; Kim, Y. A.; Kim, K. M.; Huh, Y. D.; Hyun, J. W.; Kim, H. S.; Noh, S. J.; Hwang, C.-S. Bull. Kor. Chem. Soc. 2007, 28, 1091. https://doi.org/10.5012/bkcs.2007.28.7.1091
  18. Kim, J. E.; Hwang, C.-S.; Yoon, S. W. Bull. Kor. Chem. Soc. 2008, 29, 1247. https://doi.org/10.5012/bkcs.2008.29.6.1247
  19. Kim, S. Y.; Hwang, C. S. Bull. Kor. Chem. Soc. 2010, 31, 3834. https://doi.org/10.5012/bkcs.2010.31.12.3834
  20. Li, W. R.; Xie, X. B.; Shi, Q. S.; Zeng, H. Y.; Yang, Y. S.; Chen, Y. B. Appl. Microbiol. Biotechnol. 2010, 85, 1115. https://doi.org/10.1007/s00253-009-2159-5
  21. Qinghong, Z.; Lian, G.; Jinkun, G. Appl. Catal. B Environ. 2000, 26, 207. https://doi.org/10.1016/S0926-3373(00)00122-3
  22. Yi, G.; Sun, B.; Yang, F.; Chen, D. J. Mater. Chem. 2001, 11, 2928. https://doi.org/10.1039/b108394e
  23. Tata, M.; Banerjee, S.; John, V. T.; Waguespack, Y.; Mcpherson, G. Coll. Surf. A Phys. Chem. and Eng. Asp. 1997, 127, 39. https://doi.org/10.1016/S0927-7757(96)03968-4
  24. Zhuang, J.; Zhang, X.; Wang, G.; Li, D.; Yang, W.; Li, T. J. Mater. Chem. 2003, 13, 1853. https://doi.org/10.1039/b303287f
  25. Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Phys. Rev. Lett. 1994, 72, 416. https://doi.org/10.1103/PhysRevLett.72.416
  26. Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst. 1983, 108, 1067. https://doi.org/10.1039/an9830801067
  27. Melhuish, W. H. J. Phys. Chem. 1961, 65, 229. https://doi.org/10.1021/j100820a009
  28. Yongamalar, R.; Srinivadan, R.; Vinu, A.; Ariga, K.; Bose, A. C. Solid State Commun. 2009, 149, 1919. https://doi.org/10.1016/j.ssc.2009.07.043
  29. International Union of Crystallography in International Tables for X-ray Crystallography, Part III; Netherlands, Dordrecht, 1985; p 318.
  30. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th Ed., Wiley, 1997; p 59.
  31. Begot, C.; Desnier, I.; Daudin, D. J.; Labadie, J. C.; Lebert, A. J. Microbiol. Meth. 1996, 25, 225. https://doi.org/10.1016/0167-7012(95)00090-9
  32. Zabic, M.; Kukric, Z.; Topalic-Trivunovic, L. Chem. Ind. & Chem. Eng. Quart. 2009, 15, 251. https://doi.org/10.2298/CICEQ0904251Z
  33. Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854. https://doi.org/10.1021/cm034081k
  34. Kong, H. Y.; Kim, S. Y.; Byun, J. H.; Hwang, C. S. Bull. Kor. Chem. Soc. 2011, 32, 53. https://doi.org/10.5012/bkcs.2011.32.1.53
  35. Kong, H. Y.; Byun, J. H.; Hwang, C. S. Bull. Kor. Chem. Soc. 2012, 33, 657. https://doi.org/10.5012/bkcs.2012.33.2.657
  36. Hardman, R. Environ. Health Perspect. 2006, 114, 165. https://doi.org/10.1289/ehp.8284
  37. Li, S.; Liu, P.; Wang, Q. Appl. Surf. Sci. 2012, 263, 613. https://doi.org/10.1016/j.apsusc.2012.09.117
  38. Jingling, G.; Rongjun, Q.; Bo, T. J. Nanoparticle Res. 2011, 12, 5289.
  39. Lim, E. J.; Park, S. H.; Byun, J. H.; Hwang, C. S. Bull. Kor. Chem. Soc. 2012, 33, 1741. https://doi.org/10.5012/bkcs.2012.33.5.1741

Cited by

  1. Investigating the luminescent property of transition metal doped ZnS nanoparticles synthesised by co-precipitation method vol.1126, pp.1, 2013, https://doi.org/10.1088/1757-899x/1126/1/012058