DOI QR코드

DOI QR Code

A Benzodithiophene-based Semiconducting Polymer for Organic Thin Film Transistor

  • Hong, Jung-A (School of Material Science & Engineering and ERI, Gyeongsang National University) ;
  • Kim, Ran (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Yun, Hui-Jun (School of Material Science & Engineering and ERI, Gyeongsang National University) ;
  • Park, Joung-Man (School of Material Science & Engineering and ERI, Gyeongsang National University) ;
  • Shin, Sung Chul (Department of Chemistry and RINS, Gyeongsang National University) ;
  • Kim, Yun-Hi (Department of Chemistry and RINS, Gyeongsang National University)
  • Received : 2012.12.28
  • Accepted : 2013.01.24
  • Published : 2013.04.20

Abstract

Benzodithiophene based organic semiconducting polymer was designed and synthesized by stille coupling reaction. The structure of polymer was confirmed by NMR and IR. The weight average molecular weight ($M_w$) of polymer was 8,400 using GPC with polydispersity index of 1.4. The thermal, optical and electrochemical properties of polymer were characterized by TGA and DSC, UV-vis absorption and cyclic voltammetry. OTFT device using PBDT-10 exhibited the mobility of $7.2{\times}10^{-5}\;cm^2\;V^{-1}\;s^{-1}$ and $I_{on}/I_{off}$ of $2.41{\times}10^3$. The film morphology and crystallinity of PBDT-10, was studied using AFM and XRD.

Keywords

References

  1. Bae, J. H.; Park, J. H.; Keum, C. M.; Kim, W. H.; Kim, M. H.; Kim, S. O.; Kwon, S. K.; Lee, S. D. Organic Electronics 2010, 11,784. https://doi.org/10.1016/j.orgel.2010.01.019
  2. Jackson, T. N.; Lin, Y. Y.; Gundlach, D. J.; Klauk, H. IEEE J. Sel. Top. Quantum Electron. 1998, 4, 100. https://doi.org/10.1109/2944.669475
  3. Byun, C. W.; Son, S. W.; Lee, Y. W.; Kang, H. M.; Park, S. A.; Lim, W. C.; Li, T.; Joo, S. K. Electron. Mater. Lett. 2012, 8, 107. https://doi.org/10.1007/s13391-012-2001-6
  4. Qiao, Y.; Guo, Y.; Yu, C.; Zhang, F.; Xu, W.; Liu, Y.; Zhu, D. J. Am. Chem. Soc. 2012, 134, 4084. https://doi.org/10.1021/ja3003183
  5. Park, H. T.; Shin, D. C.; Shin, S. C.; Kim, J. H.; Kwon, S. K.; Kim, Y. H. Macromolecular Research 2011, 19, 965. https://doi.org/10.1007/s13233-011-0910-0
  6. Chung, D. S.; Lee, S. J.; Park, J. W.; Choi, D. B.; Lee, D. H.; Park, J. W.; Shin, S. C.; Kim, Y. H.; Kwon, S. K.; Park, C. E. Chem. Mater. 2008, 20, 3451.
  7. Kim, S. O.; An, T. K.; Chen, J.; Kang, I.; Kang, S. H.; Chung, D. S.; Park, C. E.; Kim, Y. H.; Kwon, S. K. Adv. Funct. Mater. 2011,21, 1616. https://doi.org/10.1002/adfm.201002367
  8. Kwon, J. Y.; Lee, D. J.; Kim, K. B. Electron. Mater. Lett. 2011, 7,1. https://doi.org/10.1007/s13391-011-0301-x
  9. Oh, D. H.; Zhao, Q. H.; Kim, S. O.; Park, H. T.; Kim, Y. H.; Park, Y. S.; Kim, J. J.; Kwon, S. K. Macromolecular Research 2011, 19,629. https://doi.org/10.1007/s13233-011-0613-6
  10. Kwon, J. H.; Yeo, H. D.; Cha, H. J.; Lee, M. J.; Park, H. T.; Park, J. H.; Park, C. E.; Kim, Y. H. Macromolecular Research 2011, 19,197. https://doi.org/10.1007/s13233-011-0211-7
  11. Chung, D. S.; Park, J. W.; Park, J. H.; Moon, D. H.; Kim, G. H.; Lee, H. S.; Lee, D. H.; Shim, H. K.; Kwon, S. K.; Park, C. E. J. Mater. Chem. 2010, 20, 524. https://doi.org/10.1039/b910226d
  12. Chung, S. J.; Kim, S. O.; Kwon, S. K.; Lee, C. H.; Hong, Y. T. IEEE Electron Devices Letters 2011, 32, 1134. https://doi.org/10.1109/LED.2011.2156757
  13. Huang, H.; Youn, J.; Ortiz, R. P.; Zheng, Y.; Facchetti, A.; Marks, T. Chem. Mater. 2011, 23, 2185. https://doi.org/10.1021/cm200009k
  14. Li, Z.; Zhang, Y.; Tsang, S. W.; Du, X.; Zhou, J.; Tao, Y.; Ding, J. J. Phys. Chem. C 2011, 115, 18002. https://doi.org/10.1021/jp202996p
  15. Pan, H.; Li, Y.; Wu, Y.; Liu, P.; Ong, B. S.; Zhu, S.; Xu, G. J. Am. Chem. Soc. 2007, 129, 4112. https://doi.org/10.1021/ja067879o
  16. Pan, H.; Li, Y.; Wu, Y.; Liu, P.; Ong, B. S.; Zhu, S.; Xu, G. Chem. Mater. 2006, 18, 3237. https://doi.org/10.1021/cm0602592
  17. Park, J. W.; Lee, D. H.; Chung, D. S.; Kang, D. M.; Kim, Y. H.; Park, C. E.; Kwon, S. K. Macromolecules 2010, 43, 2118. https://doi.org/10.1021/ma902396n
  18. Chung, D. S.; Park, J. W.; Kim, S. O.; Heo, K. Y.; Park, C. E.; Ree, M. H.; Kim, Y. H.; Kwon, S. K. Chem. Mater. 2009, 21, 5500.
  19. Rieger, R.; Beckmann, D.; Pisula, W.; Steffen, W.; Kastler, M.; Mullen, K. Adv. Mater. 2010, 22, 83. https://doi.org/10.1002/adma.200901286
  20. Ong, B. S.; Wu, Y. L.; Li, Y. N.; Liu, P.; Pan, H. L. Chem. Eur. J. 2008, 14, 4766. https://doi.org/10.1002/chem.200701717
  21. McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; Macdonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W. M.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F. Nat. Mater. 2006, 5, 328. https://doi.org/10.1038/nmat1612
  22. Li, J.; Qin, F.; Li, C. M.; Bao, Q.; Park, M. B. C.; Zhang, W.; Qin, J.; Ong, B. S. Chem. Mater. 2008, 20, 2057. https://doi.org/10.1021/cm703567g
  23. Price, S. C.; Stuart, A. C.; You, W. Macromolecules 2010, 43, 797. https://doi.org/10.1021/ma902164q
  24. Sista, P.; Biewer, M. C.; Stefan, M. C. Macromol. Rapid Commun. 2012, 33, 9. https://doi.org/10.1002/marc.201100671
  25. Price, S. C.; Stuart, A. C.; Yang, L.; Zhou, H.; You, W. J. Am. Chem. Soc. 2011, 133, 4627.
  26. Shi, Q.; Fan, H.; Liu, Y.; Hu, W.; Li, Y.; Zhan, X. Macromolecules 2011, 44, 9173. https://doi.org/10.1021/ma2019683
  27. Kim, S. O.; Lee, M. W.; Jang, S. H.; Park, S. M.; Park, J. W.; Park, M. H.; Kang, S. H.; Kim, Y. H.; Song, C. K.; Kwon, S. K. Thin Solid Films 2011, 519, 7998. https://doi.org/10.1016/j.tsf.2011.05.060
  28. McCullough, R. D.; Lowe, R. D.; Jayaraman, M.; Anderson, D. L. J. Org. Chem. 1993, 58, 904. https://doi.org/10.1021/jo00056a024
  29. Jang, S. H.; Tai, T. B.; Park, J. H.; Jeong, H. J.; Chun, E. J.; Kim, Y. H.; Lee, S. G. Macromolecular Research 2010, 18, 189.

Cited by

  1. New Alkoxy-Functionalized Naphthodithiophene-Based Semiconducting Oligomers and Polymers vol.54, pp.5-6, 2014, https://doi.org/10.1002/ijch.201400046
  2. Studies of Substituents Impact on the Photophysical Properties of 8-Hydroxyquinoline Derivatives vol.27, pp.1, 2015, https://doi.org/10.1002/hc.21301
  3. Oxidative Transformation of a Tetrathia S-Confused Isophlorin into Porphyrin Cation vol.19, pp.18, 2017, https://doi.org/10.1021/acs.orglett.7b02317
  4. Novel intramolecular π–π-interaction in a BODIPY system by oxidation of a single selenium center: geometrical stamping and spectroscopic and spectrometric distinctions vol.46, pp.12, 2017, https://doi.org/10.1039/C7DT00555E
  5. In-flow photooxygenation of aminothienopyridinones generates iminopyridinedione PTP4A3 phosphatase inhibitors vol.17, pp.9, 2019, https://doi.org/10.1039/C9OB00025A
  6. Structure-Assembly-Property Relationships of Simple Ditopic Hydrogen-Bonding-Capable π-Conjugated Oligomers vol.3, pp.2, 2013, https://doi.org/10.1055/a-1534-1508